K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 2 2024

B=2006^2024
B= ....6
=> B chia 5 dư 1
Có 2006 đồng dư với -1 (mod 223)
=> 2006^2024 đồng dư với (-1)^2024 = 1 (mod 223)
=> B chia 223 dư 1

12 tháng 8 2020

Xét \(A=a^{2024}-a^{2020}=a^{2020}\left(a^4-1\right)\)

- Chứng minh A chia hết cho 2:
 +) Nếu a lẻ thì \(a-1\)chẵn nên A chia hết cho 2

 +) Nếu a chẵn thì \(a^{2020}\)chẵn nên A chia hết cho 2

- Chứng minh A chia hết cho 3:
 +) Nếu a chia hết cho 3 thì \(a^{2020}\)chia hết cho 3 nên A chia hết cho 3

 +) Nếu a không chia hết cho 3 thì \(a^2\equiv1\)(mod 3) \(\Rightarrow a^4\equiv1\)(mod 3). Vậy \(a^4-1\)chia hết cho 3 nên A chia hết cho 3
- Chứng minh A chia hết cho 5:

 +) Nếu a chia hết cho 5 thì \(a^{2020}\)chia hết cho 5 nên a chia hết cho 5

 +) Nếu a không chia hết cho 5 thì \(a^2\equiv1,4\)(mod 5) \(\Rightarrow a^4\equiv1\)(mod 5). Vậy \(a^4-1\)chia hết cho 5 nên A chia hết cho 5

Từ đây ta có A chia hết cho 2, 3, 5 vậy A chia hết cho 30 \(\Rightarrow a^{2024}\equiv a^{2020}\)(mod 30)

\(\Rightarrow a^{2020}+b^{2020}+c^{2020}\equiv a^{2024}+b^{2024}+c^{2024}\equiv7\)(mod 30)
Vậy \(a^{2024}+b^{2024}+c^{2024}\)chia 30 dư 7

12 tháng 8 2020

* Ta c/m: \(x^5-x⋮30\forall x\in Z\)

+ \(x^5-x=x\left(x^2-1\right)\left(x^2+1\right)=\left(x-1\right)x\left(x+1\right)\left(x^2-4+5\right)\)

\(=\left(x-2\right)\left(x-1\right)x\left(x+1\right)\left(x+2\right)+5\left(x-1\right)x\left(x+1\right)\)

\(\left(x-2\right)\left(x-1\right)x\left(x+1\right)\left(x+2\right)\) là tích 5 số nguyên liên tiếp

\(\Rightarrow\left\{{}\begin{matrix}\left(x-2\right)\left(x-1\right)x\left(x+1\right)\left(x+2\right)⋮5\\\left(x-2\right)\left(x-1\right)x\left(x+1\right)\left(x+2\right)⋮2\\\left(x-2\right)\left(x-1\right)x\left(x+1\right)\left(x+2\right)⋮3\end{matrix}\right.\)

\(\Rightarrow\left(x-2\right)\left(x-1\right)x\left(x+1\right)\left(x+2\right)⋮30\) ( do 2,3,5 đôi một nguyên tố cùng nhau ) (1)

+ \(\left(x-1\right)x\left(x+1\right)\) là tích 3 số nguyên liên tiếp

\(\Rightarrow\left\{{}\begin{matrix}\left(x-1\right)x\left(x+1\right)⋮2\\\left(x-1\right)x\left(x+1\right)⋮3\end{matrix}\right.\) \(\Rightarrow\left(x-1\right)x\left(x+1\right)⋮6\) ( do \(\left(2,3\right)=1\) )

\(\Rightarrow5\left(x-1\right)x\left(x+1\right)⋮30\) (2)

Từ (1) và (2) => đpcm

Trở lại bài toán ta có:

\(P-M=a^{2019}\left(a^5-a\right)+b^{2019}\left(b^5-b\right)+c^{2019}\left(c^5-c\right)⋮30\)

( do \(a^5-a⋮30,b^5-b⋮30,c^5-c⋮30\) )

=> P và M có cùng số dư khi chia 30

=> P chia 30 dư 7

TH
Thầy Hùng Olm
Manager VIP
25 tháng 3 2023

 A-B

A = 50+52+54+...52022

52xA=52+54+...52024 

24xA = 52024-1

A=\(\dfrac{5^{2024}-1}{24}\)

B = 51+53+...52023

B =5x(50+52+...52022) = 5xA

M = A-B = A-5xA = -4A

M=\(\dfrac{1-5^{2024}}{6}\)

Vậy 24xA - 1 = 52024

Nên 52024 chia cho 3 dư 2 

7 tháng 12 2023

Vì số đó chia cho 2024 có thương bằng số dư nên số đó bằng:

   2024 + 1 = 2025 (lần thương)

Vậy số đó chia hết cho 2025

Số nhỏ nhất có 5 chữ số chia hết cho 2025 là: 10125

Vậy số cần tìm là 10125

 

7 tháng 12 2023

loading... 

AH
Akai Haruma
Giáo viên
11 tháng 12 2023

10 tháng 11 2023

a) \(A=2+2^2+...+2^{2024}\)

\(2A=2^2+2^3+...+2^{2025}\)

\(2A-A=2^2+2^3+...+2^{2025}-2-2^2-...-2^{2024}\)

\(A=2^{2025}-2\) 

b) \(2A+4=2n\)

\(\Rightarrow2\cdot\left(2^{2025}-2\right)+4=2n\)

\(\Rightarrow2^{2026}-4+4=2n\)

\(\Rightarrow2n=2^{2026}\)

\(\Rightarrow n=2^{2026}:2\)

\(\Rightarrow n=2^{2025}\) 

c) \(A=2+2^2+2^3+...+2^{2024}\)

\(A=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{2023}+2^{2024}\right)\)

\(A=2\cdot3+2^3\cdot3+...+2^{2023}\cdot3\)

\(A=3\cdot\left(2+2^3+...+2^{2023}\right)\)

d) \(A=2+2^2+2^3+...+2^{2024}\)

\(A=2+\left(2^2+2^3+2^4\right)+\left(2^5+2^6+2^7\right)+...+\left(2^{2022}+2^{2023}+2^{2024}\right)\)

\(A=2+2^2\cdot7+2^5\cdot7+...+2^{2022}\cdot7\)

\(A=2+7\cdot\left(2^2+2^5+...+2^{2022}\right)\)

Mà: \(7\cdot\left(2^2+2^5+...+2^{2022}\right)\) ⋮ 7

⇒ A : 7 dư 2 

10 tháng 11 2023

cái câu d nó cứ sao sao ý bn

hiu

10 tháng 12 2018

Trả lời nhanh lên tớ cần gấp . Đúng tớ tích .

10 tháng 12 2018

a, Tổng các chữ số của A là (2+6)*2007 = 8*2007 = X (tự tính đi nhé ^^)

=> Số dư của A khi chia cho 9 = Số dư của X khi chia cho 9

b, A chia 5 dư 1; A chia 3 có số dư bằng X chia 3 = Y (cũng tự tính luôn nhé ^^^^)

=> Số dư của A khi chia cho 15 = 1*Y

*Đây chỉ là hướng làm thôi nhé, còn suy luận thế nào thì tự nghĩ đi :v

Học tốt nha ^^

6 tháng 12 2023

99225

6 tháng 12 2023

sao làm trên Violympic sai

AH
Akai Haruma
Giáo viên
7 tháng 12 2023

Lời giải:

Gọi thương và số dư là $m$. Điều kiện: $m< 2024$.

Ta có:

Số cần tìm = $2024\times m+m=2025\times m$

Vì số cần tìm có 5 chữ số 

$\Rightarrow 2025\times m>9999$

$\Rightarrow m> 4,9$

Để số cần tìm là nhỏ nhất thì $m$ nhỏ nhất. Do đó $m=5$

Khi đó số cần tìm là: $2025\times 5=10125$

7 tháng 12 2023

Vì chia số đó chó 2024 được thương và số dư bằng nhau nên số đó bằng:

            2024 + 1 = 2025 (lần thương)

Vậy số đó phải chia hết cho 2025

Số nhỏ nhất có 5 chữ số chia hết cho 2025 là: 10125

Số cần tìm là 10125