bai1 tim\(x^2\)biet
a) x=\(\sqrt{3}\)
b) x=\(\sqrt{8}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\left(x+5\right)^2>=0\forall x\)
\(\left(2y-8\right)^2>=0\forall y\)
Do đó: \(\left(x+5\right)^2+\left(2y-8\right)^2>=0\forall x,y\)
Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}x+5=0\\2y-8=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=-5\\y=4\end{matrix}\right.\)
b: \(\left(x+3\right)\left(2y-1\right)=5\)
=>\(\left(x+3\right)\left(2y-1\right)=1\cdot5=5\cdot1=\left(-1\right)\cdot\left(-5\right)=\left(-5\right)\cdot\left(-1\right)\)
=>\(\left(x+3;2y-1\right)\in\left\{\left(1;5\right);\left(5;1\right);\left(-1;-5\right);\left(-5;-1\right)\right\}\)
=>\(\left(x,y\right)\in\left\{\left(-2;3\right);\left(2;1\right);\left(-4;-2\right);\left(-8;0\right)\right\}\)
a. \(9x=225\Rightarrow x=25\)
b. \(2x=8\Rightarrow x=4\)
c. \(3\left(2x-3\right)=6\Rightarrow6x=15\Rightarrow x=\frac{15}{6}\)
d. \(4\left(x+1\right)=8\Rightarrow4x=4\Rightarrow x=1\)
e. \(\sqrt{x+2}.\sqrt{x-2}-\sqrt{x-2}=0\Rightarrow\sqrt{x-2}\left(\sqrt{x+2}-1\right)=0\)
=> \(\sqrt{x-2}=0\Rightarrow x-2=0\Rightarrow x=2\)
hoặc \(\sqrt{x+2}-1=0\Rightarrow\sqrt{x+2}=1\Rightarrow x+2=1\Rightarrow x=-1\)
f. \(\sqrt{x+1}+3\sqrt{x+1}=4\Rightarrow4\sqrt{x+1}=4\Rightarrow\sqrt{x+1}=1\Rightarrow x+1=1\Rightarrow x=0\)
g. \(\sqrt{x-2}\left(1-\sqrt{x}\right)=0\)
=> \(\sqrt{x-2}=0\Rightarrow x-2=0\Rightarrow x=2\)
hoặc \(1-\sqrt{x}=0\Rightarrow\sqrt{x}=1\Rightarrow x=1\)
h. \(\sqrt{x+3}.\sqrt{x-3}-\sqrt{x+3}=0\Rightarrow\sqrt{x+3}\left(\sqrt{x-3}-1\right)=0\)
=> \(\sqrt{x+3}=0\Rightarrow x=-3\)
hoặc \(\sqrt{x-3}-1=0\Rightarrow\sqrt{x-3}=1\Rightarrow x=4\)
√x−2(1−√x)=0
=> √x−2=0⇒x−2=0⇒x=2
hoặc 1−√x=0⇒√x=1⇒x=1
h. √x+3.√x−3−√x+3=0⇒√x+3(√x−3−1)=0
=> √x+3=0⇒x=−3
hoặc
√x−2(1−√x)=0
=> √x−2=0⇒x−2=0⇒x=2
hoặc 1−√x=0⇒√x=1⇒x=1
h. √x+3.√x−3−√x+3=0⇒√x+3(√x−3−1)=0
=> √x+3=0⇒x=−3
hoặc
\(P=\frac{3\left(x+\sqrt{x}-3\right)}{x+\sqrt{x}-2}+\frac{\sqrt{x}+3}{\sqrt{x}+2}-\frac{\sqrt{x}-2}{\sqrt{x}-1}\left(ĐKXĐ:x\ne1;x\ge0\right)\)
\(P=\frac{3x+3\sqrt{x}-9}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}+\frac{\sqrt{x+3}}{\sqrt{x}+2}-\frac{\sqrt{x}-2}{\sqrt{x}-1}\)
\(P=\frac{3x+3\sqrt{x}-9}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}+\frac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}-\frac{x-4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)
\(P=\frac{3x+3\sqrt{x}-9+x+2\sqrt{x}-3-x+4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)
\(P=\frac{3x-8+5\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)
\(P=\frac{3x-3\sqrt{x}+8\sqrt{x}-8}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)
\(P=\frac{\left(3\sqrt{x}+8\right)\left(\sqrt{x-1}\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)
\(P=\frac{\left(3\sqrt{x}+8\right)}{\left(\sqrt{x}+2\right)}\)
b)Để \(P< \frac{15}{4}\)thì \(\frac{\left(3\sqrt{x}+8\right)}{\left(\sqrt{x}+2\right)}< \frac{15}{4}\)
Ta có:\(\frac{\left(3\sqrt{x}+8\right)}{\left(\sqrt{x}+2\right)}< \frac{15}{4}\)
\(\Leftrightarrow\frac{\left(3\sqrt{x}+8\right)}{\left(\sqrt{x}+2\right)}-\frac{15}{4}< 0\)
\(\Leftrightarrow\frac{12\sqrt{x}+32-15\sqrt{x}-30}{4\left(\sqrt{x}+2\right)}< 0\)
\(\Leftrightarrow\frac{-\left(3\sqrt{x}+2\right)}{4\sqrt{x}+8}< 0\)
Vì \(x\ge0;x\ne1\)
Do đó \(0< 4\sqrt{x}+8\)
Mà \(-\left(3\sqrt{x}+2\right)< 0\)
Vậy \(P< \frac{15}{4}\left(đpcm\right)\)
c)Ta có:\(P=\frac{\left(3\sqrt{x}+8\right)}{\left(\sqrt{x}+2\right)}\)
\(\Leftrightarrow P=\frac{3\sqrt{x}+6+2}{\left(\sqrt{x}+2\right)}\)
\(\Leftrightarrow P=\frac{3\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+2\right)}+\frac{2}{2\sqrt{x}+2}\)
\(\Leftrightarrow P=3+\frac{2}{\sqrt{x}+2}\)
Vì \(x\ge0;x\ne1\Rightarrow\frac{2}{\sqrt{x}+2}\le1\)
Do đó \(P\le4\Leftrightarrow x=1\)
Vậy Max P=4 khi x=1
P=3x+3√x−9(√x−1)(√x+2) +√x+3√x+2 −√x−2√x−1
P=3x+3√x−9(√x−1)(√x+2) +(√x+3)(√x−1)(√x+2)(√x−1) −x−4(√x−1)(√x+2)
P=3x+3√x−9+x+2√x−3−x+4(√x−1)(√x+2)
P=3x−8+5√x(√x−1)(√x+2)
P=3x−3√x+8√x−8(√x−1)(√x+2)
P=(3√x+8)(√x−1)(√x−1)(√x+2)
P=(3√x+8)(√x+2)
b)Để P<154 thì (3√x+8)(√x+2) <154
Ta có:(3√x+8)(√x+2) <154
⇔(3√x+8)(√x+2) −154 <0
⇔12√x+32−15√x−304(√x+2) <0
⇔−(3√x+2)4√x+8 <0
Vì x≥0;x≠1
Do đó 0<4√x+8
Mà −(3√x+2)<0
Vậy P<154 (đpcm)
c)Ta có:P=(3√x+8)(√x+2)
⇔P=3√x+6+2(√x+2)
⇔P=3(√x+2)(√x+2) +22√x+2
⇔P=3+2√x+2
Vì x≥0;x≠1⇒2√x+2 ≤1
Do đó
\(P=\frac{\sqrt{\left(\sqrt{a-4}\right)^2+2.2.\sqrt{a-4}+4}+\sqrt{\left(\sqrt{a-4}\right)^2-2.2.\sqrt{a-4}+4}}{\sqrt{1^2-2.\frac{4}{a}}+\frac{4^2}{a^2}}\)
=\(\frac{\sqrt{\left(\sqrt{a-4}+2\right)^2}+\sqrt{\left(\sqrt{a-4}-2\right)^2}}{\sqrt{\left(1-\frac{4}{a}\right)^2}}\)
=\(\frac{|\sqrt{a-4}+2|+|\sqrt{a-4}-2|}{|1-\frac{4}{a}|}\)
=\(\frac{a-4+2+a-4-2}{1-\frac{4}{a}}\)
=\(\frac{2a-8}{\frac{a-4}{a}}\)
=\(\frac{2.\left(a-4\right)}{\frac{a-4}{a}}\)
=\(2.\left(a-4\right).\frac{a}{a-4}\)
=2a
(ĐKXĐ: a khác 4)
\(B=\dfrac{x+3\sqrt{x}+2+2x-4\sqrt{x}-5\sqrt{x}-2}{x-4}=\dfrac{3x-6\sqrt{x}}{x-4}=\dfrac{3\sqrt{x}}{\sqrt{x}+2}\)
B=2/3A
=>3căn x/căn x+2=2/3*3=2
=>3căn x=2căn x+4
=>x=16
a, \(x^2=\left(\sqrt{3}\right)^2=3\)
b, \(x^2=\left(\sqrt{8}\right)^2=8\)
a) \(x^2=\left(\sqrt{3}\right)^2=3\)
b) \(x^2=\left(\sqrt{8}\right)^2=8\)