Tìm Min A = \(\frac{a^2+2}{\sqrt{a^2}+1}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1 : áp dụng BĐT SVAC ta có \(A\ge\frac{(a+b+c)^2}{\sqrt{a+b}+\sqrt{b+c}+\sqrt{a+c}}=\frac{1.\sqrt{2a+2b+2c}}{\sqrt{2.}(\sqrt{b+c}+\sqrt{a+b}+\sqrt{a+c})}\)
mặt khác lại có \(\frac{\sqrt{2a+2b+2c}}{\sqrt{2}.(\sqrt{a+b}+\sqrt{b+c}+\sqrt{a+c})}\ge\frac{\sqrt{(\sqrt{a+b}+\sqrt{b+c}+\sqrt{a+c})^2}}{\sqrt{2}.\sqrt{3}.(\sqrt{a+b}+\sqrt{b+c}+\sqrt{a+c})}=\frac{1}{\sqrt{6}}\)theo bđt svac
\(\Rightarrow A\ge\frac{1}{\sqrt{6}}\)dấu bằng xảy ra tại a=b=c=\(\frac{1}{3}\)
Ta có \(\frac{y}{x\sqrt{y^2+1}}=\frac{y\sqrt{xz}}{x\sqrt{y\left(x+y+z\right)+xz}}=\frac{yz}{\sqrt{x\left(y+z\right).z\left(x+y\right)}}\ge\frac{2yz}{2xz+xy+yz}\)
Đặt \(a=xy,b=yz,c=xz\)=> \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1\)
Khi đó
\(P\ge\frac{2b}{2c+a+b}+\frac{2c}{2a+b+c}+\frac{2a}{2b+a+c}\ge\frac{2\left(a+b+c\right)^2}{b^2+c^2+a^2+3\left(ab+bc+ac\right)}\)
Xét \(P\ge\frac{3}{2}\)
=> \(4\left(a+b+c\right)^2\ge3\left(a^2+b^2+c^2\right)+9\left(ab+bc+ac\right)\)
<=> \(a^2+b^2+c^2\ge\left(ab+bc+ac\right)\)(luôn đúng )
Vậy \(MinP=\frac{3}{2}\)khi a=b=c=3=> \(x=y=z=\sqrt{3}\)
điều kiện a> 0
\(D=\frac{\sqrt{a}\left(a\sqrt{a}+1\right)}{a-\sqrt{a}+1}-\frac{\sqrt{a}\left(2\sqrt{a}+1\right)}{\sqrt{a}}+1..\)
\(=\frac{\sqrt{a}\left(\sqrt{a}+1\right)\left(a-\sqrt{a}+1\right)}{\left(a-\sqrt{a}+1\right)}-\left(2\sqrt{a}+1\right)+1\)
\(\sqrt{a}\left(\sqrt{a}+1\right)-2\sqrt{a}-1+1=a-\sqrt{a}.\)
b, D = 2 => \(a-\sqrt{a}=2\Leftrightarrow a-\sqrt{a}-2=0\)
\(\Leftrightarrow\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)=0\Leftrightarrow\sqrt{a}-1=0\)( vì a > 0 nên \(\sqrt{a}+1>0\))
\(\Leftrightarrow a=1\)
c, a > 1 => \(\sqrt{a}>1\Rightarrow\sqrt{a}-1>0\)
\(\Rightarrow D=a-\sqrt{a}=\sqrt{a}\left(\sqrt{a}-1\right)>0\)
Vậy D = | D | > 0
d, \(D=a-\sqrt{a}=a-\sqrt{a}+\frac{1}{4}-\frac{1}{4}=\left(\sqrt{a}-\frac{1}{2}\right)^2-\frac{1}{4}\ge-\frac{1}{4}\)với mọi a > 0
vậy Dmin = - 1/4 khi a = 1/4
xin lỗi phàn b anh làm sai. Sửa lại như sau :
b, D = 2 => \(a-\sqrt{a}=2\Rightarrow a-\sqrt{a}-2=0\Leftrightarrow\left(\sqrt{a}-2\right)\left(\sqrt{a}+1\right)=0.\)
\(\Leftrightarrow\sqrt{a}-2=0\)( vì a > 0, nên căn a + 1 > 0 )
\(\Leftrightarrow a=4\)