tìm số nguyên n để biểu thức:
B = 6n-3:3n+1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để : \(A=\frac{6n-5}{n-1}\in Z\)
Thì 6n - 5 chia hết cho n - 1
<=> 6n - 6 + 1 chia hết cho n - 1
=> 6(n - 1) + 1 chia hết cho n - 1
=> 1 chia hết cho n - 1
=> n - 1 thuộc Ư(1) = {-1;1}
Vậy n = {0;2} .
Để : \(B=\frac{3n+1}{2n-3}\in Z\)
Thì 3n + 1 chia hết cho 2n - 3
=> 6n + 2 chia hết cho 2n - 3
=> 6n - 9 + 11 chia hết cho 2n - 3
=> 3(2n - 3) + 11 chia hết cho 2n - 3
=> 11 chia hết cho 2n - 3
=> 2n - 3 thuộc Ư(11) = {-11;-1;1;11}
=> 2n = {-8;2;4;14}
=> n = {-4;1;2;7}
Vậy n = {-4;1;2;7} .
A=\(\frac{3n+4}{n-1}\)=\(\frac{3\left(n-1\right)+7}{n-1}\)=3+\(\frac{7}{n-1}\)
Để A nghuyên thì \(\frac{7}{n-1}\)nguyên => n-1 \(\in\)ƯC(7)=\(\left\{1;-1;7;-7\right\}\)
=>n\(\in\)\(\left\{2;0;8;-6\right\}\)
B=\(\frac{6n-3}{3n+1}\)=\(\frac{2\left(3n+1\right)-5}{3n+1}\)=2+\(\frac{-5}{3n+1}\)
=>3n+1\(\in\)ƯC(-5)=\(\left\{-1;1;-5;5\right\}\)
=>n\(\in\)\(\left\{0;-2\right\}\)
a) A = \(\frac{3n+9}{n-4}\)= \(\frac{3\left(n-4\right)+21}{n-4}\)= 3 + \(\frac{21}{n-4}\)
Để A là số nguyên , n-4 phải là ước của 21. Ta được :
n-4 | -21 | -7 | -3 | -1 | 1 | 3 | 7 | 21 |
n | -17 | -3 | 1 | 3 | 5 | 7 | 11 | 25 |
A | 2 | 0 | -4 | -18 | 24 | 10 | 6 | 4 |
b) Biến đổi : B = 3 + \(\frac{8}{2n-1}\)
2n-1 là ước lẻ của 8 .
Đáp số :
n | 1 | 0 |
B | 11 | -5 |
\(A=\frac{6n+2}{3n-2}=\frac{6n-4+6}{3n-2}=\frac{2\left(3n-2\right)+6}{3n-2}=2+\frac{6}{3n-2}\)
Để A nguyên thì \(\frac{6}{3n-2}\) cũng phải nguyên => 6 chia hết cho 3n - 2 => 3n - 2 = +1; +2;+3; +6
3n - 2 | 1 | -1 | 2 | -2 | 3 | -3 | 6 | -6 |
3n | 3 | 1 | 4 | 0 | 5 | -1 | 8 | -4 |
n | 1 | 1/3 | 4/3 | 0 | 5/3 | -1/3 | 8/3 | -4/3 |
Vì n nguyên nên n = 1; 0
Gọi ước chung là d (d thuộc N*)
ta có 6n+3chia hết cho d
3n+1chia hết cho d
=>6n-3chia hết cho d
6n+2chia hết cho d
=>(6n-3)-(6n+2)chia hết cho d
=>1chia hết cho d
=> d=1
=>n=1
vậy n=1
a)Để A có giá trị nguyên thì 3n+4 chia hết cho n-1
=>3(n-1)+7 chia hết cho n-1
=> n-1 thuộc Ư(7)={1;7;-1;-7}
Phần cuối bn tự làm nha
Còn câu b làm tương tự
a) Từ đề bài, ta có:
\(A=\frac{3n+4}{n-1}=\frac{3\left(n-1\right)+7}{n-1}=3+\frac{7}{n-1}\)
\(\Rightarrow\left(n-1\right)\inƯ\left(7\right)\)
\(\Rightarrow\left(n-1\right)\in\left\{\pm1;\pm7\right\}\)
\(\Rightarrow n\in\left\{2;0;-6;8\right\}\)
b) \(\frac{6n-3}{3n+1}=\frac{2\left(3n+1\right)+5}{3n+1}=2+\frac{5}{3n+1}\)
\(\Rightarrow\left(3n+1\right)\inƯ\left(5\right)\)
\(\Rightarrow\left(3n+1\right)\in\left\{\pm1;\pm5\right\}\)
\(\Rightarrow n\in\left\{\frac{-2}{3};0;-2;\frac{4}{3}\right\}\)
\(B=\dfrac{6n-3}{3n+1}\)
Để B là một số nguyên thì: (6n - 3) ⋮ (3n + 1)
⇒ (6n + 2 - 5) ⋮ (3n + 1)
⇒ [2(3n + 1) - 5] ⋮ (3n + 1)
⇒ - 5 ⋮ (3n + 1)
⇒ 3n + 1 ∈ Ư(-5) = {1; -1; 5; -5}
⇒ 3n ∈ {0; - 2; 4; -6}
Mà: n ∈ Z
⇒ n ∈ {0; -2}