\(x,y>0\)thỏa mãn \(x\ge2y\).Tìm \(min\)\(A=\frac{2x^2+y^2-2xy}{xy}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P=\frac{2x^2+y^2-2xy}{xy}=\frac{2x}{y}+\frac{y}{x}-2=\frac{7x}{4y}+\left(\frac{x}{4y}+\frac{y}{x}-2\right)\)
Áp dụng BĐT Cô - Si cho các số dương :
\(\frac{x}{4y}+\frac{y}{x}\ge2\sqrt{\frac{x}{4y}.\frac{y}{x}}=1\)
\(\frac{7x}{4y}\ge\frac{7.2y}{4y}=\frac{7}{2}\) do \(x\ge2y\)
Do đó : \(P\ge\frac{7}{2}+1-2=\frac{5}{2}\)
Vậy \(P_{min}=\frac{5}{2}\) khi x\(=2y\)
Chúc bạn học tốt !!!
Từ điều kiện bài toán ta có
\(\hept{\begin{cases}\frac{x}{y}\ge1\\x-y\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{x}{y}\ge1\\x^2-2xy+y^2\ge0\end{cases}}\)
Thế vào ta được
\(P=\frac{2x^2+y^2-2xy}{xy}\ge\frac{x^2}{xy}=\frac{x}{y}\ge1\)
Dấu = xảy ra khi x = y
\(A=\frac{1}{x^2+y^2}+\frac{2}{2xy}\ge\frac{\left(1+\sqrt{2}\right)^2}{x^2+y^2+2xy}=\frac{\left(1+\sqrt{2}\right)^2}{\left(x+y\right)^2}=3+2\sqrt{2}\)
Amin =\(3+2\sqrt{2}\) khi x =y =1/2
\(A=\frac{1}{x^2+y^2}+\frac{2}{xy}+4xy=\left(\frac{1}{x^2+y^2}+\frac{1}{2xy}\right)+\left(4xy+\frac{1}{4xy}\right)+\frac{5}{4xy}\)
\(\ge\frac{\left(1+1\right)^2}{x^2+2xy+y^2}+2+\frac{5}{\left(x+y\right)^2}=4+2+5=11\)
A = \(\frac{7}{2}\left(\frac{1}{x^2+y^2}+\frac{1}{2xy}\right)+\left(\frac{1}{4xy}+4xy\right)-\frac{5}{2\left(x^2+y^2\right)}\)
Áp dụng bđt cauchy là ra bài
Ta có:
\(A=\frac{2x^2+y^2-2xy}{xy}=\frac{\left(x^2-4xy+4y^2\right)+x^2+2xy-3y^2}{xy}=\frac{\left(x-2y\right)^2+x^2+2xy-3y^2}{xy}\)
\(=\frac{\left(x-2y\right)^2}{xy}+\frac{x}{y}+2+\frac{-3y}{x}\ge0+2+2+\frac{-3}{2}=\frac{5}{2}\)
Vậy minA = \(\frac{5}{2}\)khi x = 2y.