K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 2 2024

Để biểu thức trên đạt giá trị nhỏ nhất thì \(\left|x-2021\right|or\left|x-2023\right|\) đạt giá trị nhỏ nhất

TH1: \(GTNN:\left|x-2021\right|=0\) tại \(x=2021\)

Khi đó biểu thức trên có giá trị: \(2\cdot\left|2021-2021\right|+\left|2021-2023\right|=2\)

TH2: \(GTNN:\left|x-2023\right|=0\) tại \(x=2023\)

Khi đó biểu thức trên có giá trị: \(2\cdot\left|2023-2021\right|+\left|2023-2023\right|=4\)

Trường hợp 1 cho ra giá trị nhỏ nhất của biểu thức, vậy giá trị nhỏ nhất của \(2\cdot\left|x-2021\right|+\left|x-2023\right|=2\) tại \(x=2021\)

1 tháng 7 2021

1) Ta có \(\hept{\begin{cases}\left|x\right|\ge0\forall x\\\left|y-2\right|\ge0\forall y\end{cases}}\Leftrightarrow\left|x\right|+\left|y-2\right|\ge0\forall x;y\)

Dấu "=" xảy ra <=> \(\hept{\begin{cases}x=0\\y-2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=0\\y=2\end{cases}}\)

Vậy x  = 0 ; y = 2

Thay x = 0 ; y = 2 vào B 

=> B = 2.0 - 5.2 + 7.0.2 = -10

Vậy B = -10

1 tháng 7 2021

Bài 2:

\(a)\)

\(A=\left|x-2021\right|+5\)

Ta có:

\(\left|x-2021\right|\ge0\Rightarrow\left|x-2021\right|+5\ge5\)

Dấu '' = '' xảy ra khi:

 \(x-2021=0\)

\(\Leftrightarrow x=2021\)

Vậy \(MinA=5\Leftrightarrow x=2021\)

\(b)\)

\(B=\left|x-2\right|+\left|x-5\right|\)

\(B=\left|x-2\right|+\left|x-5\right|\ge\left|x-2+5-x\right|=\left|3\right|=3\)

Dấu '' = '' xảy ra khi: 

\(\left(x-2\right)\left(5-x\right)\ge0\)

\(\Leftrightarrow2\le x\le5\)

Vậy \(MinB=3\Leftrightarrow2\le x\le5\)

9 tháng 11 2016

Bài 1:

\(A=\left|x-3\right|+\left|x-5\right|+\left|x-7\right|\)

\(\ge x-3+0+7-x=4\)

Dấu = khi \(\begin{cases}x-3\ge0\\x-5=0\\7-x\le0\end{cases}\)\(\Leftrightarrow\begin{cases}x\ge3\\x=5\\x\le7\end{cases}\)\(\Leftrightarrow x=5\)

Vậy MinA=4 khi x=5

Bài 2:

\(B=\left|x-1\right|+\left|x-2\right|+\left|x-3\right|+\left|x-5\right|\)

\(\ge x-1+x-2+3-x+5-x=5\)

Dấu = khi \(\begin{cases}x-1\ge0\\x-2\ge0\\3-x\ge0\\5-x\ge0\end{cases}\)\(\Leftrightarrow\begin{cases}x\ge1\\x\ge2\\x\le3\\x\le5\end{cases}\)\(\Leftrightarrow2\le x\le3\)

 

23 tháng 5 2021

2450 nhé

23 tháng 5 2021

còn cái nịtッ

10 tháng 9 2017

ta có \(P=\left|x+3\right|+\left|x-2\right|+\left|x-5\right|=\left|x+3\right|+\left|5-x\right|+\left|x-2\right|\)

Áp dụng tính chât dấu giá trị tuyệt đối ta có 

\(\left|x+3\right|+\left|5-x\right|\ge\left|x+3+5-x\right|=8\)

mà \(\left|x-2\right|\ge0\)

\(\Rightarrow P\ge8\)

dấu = xảy ra <=>\(\hept{\begin{cases}\left(x+3\right)\left(5-x\right)\ge0\\x-2=0\end{cases}\Leftrightarrow\hept{\begin{cases}\left(x+3\right)\left(x-5\right)\ge0\\x=2\end{cases}}}\)

\(\Leftrightarrow\hept{\begin{cases}5\ge x\ge-3\\x=2\end{cases}}\)

<=> x=2

vậy Pmin =8 <=> x=2

10 tháng 4 2017

Lập bảng xét dấu rồi làm nha bạn.

10 tháng 4 2017

mk mới lớp 7 k giải đc toán 8 

20 tháng 12 2015

 

A= |x-5| +|x+17| = |5-x|+|x+17| >/ | 5-x +x+17| =22

 => Min A = 22 khi -17 </ x < / 5

B = ( |x+8| + |x+50| ) + |x+13|  = ( |-x-8|+|x+50| ) + |x+13|  >/  | -x-8 +x+50 | + 0 = 42

 Min B =42 khi x = -13

30 tháng 12 2020

A = | x - 2015 | + | x - 2016 |

= | x - 2015 | + | -( x - 2016 ) |

= | x - 2015 | + | 2016 - x |

≥ | x - 2015 + 2016 - x | = 1

Dấu "=" xảy ra <=> ( x - 2015 )( 2016 - x ) ≥ 0

=> 2015 ≤ x ≤ 2016

=> MinA = 1, đạt được khi 2015 ≤ x ≤ 2016