K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 2 2024

\(\dfrac{x}{y}=\dfrac{6}{5}\Leftrightarrow\dfrac{x}{6}=\dfrac{y}{5}\)

\(\dfrac{x+y}{6+5}=\dfrac{22}{11}=2\)

\(\dfrac{x}{6}=2\Rightarrow x=12\\ \dfrac{y}{5}=2\Rightarrow y=10\)

1 tháng 2 2024

\(\dfrac{x}{y}=\dfrac{6}{5}\)

\(=>\dfrac{x}{6}=\dfrac{y}{5}\)

\(=>\dfrac{x+y}{6+5}=\dfrac{22}{11}=2\)

\(=>\dfrac{x}{6}=2=>x=12\)

\(=>\dfrac{y}{5}=2=>y=10\)

Vậy \(\left(x;y\right)=\left(12;10\right)\)

8 tháng 1 2018

a) ĐK xác định : x≠0;y≠0

ta có : \(\left\{{}\begin{matrix}\dfrac{5}{x}+\dfrac{6}{y}=9\\\dfrac{2}{x}-\dfrac{6}{y}=7\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}\dfrac{7}{x}=16\\\dfrac{2}{x}-\dfrac{6}{y}=7\end{matrix}\right.< =>\left\{{}\begin{matrix}x=\dfrac{7}{16}\\y=-\dfrac{42}{17}\end{matrix}\right.\)

Vậy S = {(\(\dfrac{7}{16};-\dfrac{42}{17}\))}

b) Đk xác định : x≠0;y≠0

ta có : \(\left\{{}\begin{matrix}\dfrac{5}{x}+\dfrac{1}{y}=14\\\dfrac{8}{x}-\dfrac{1}{y}=-8\end{matrix}\right.< =>\left\{{}\begin{matrix}\dfrac{13}{x}=6\\\dfrac{5}{x}+\dfrac{1}{y}=14\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}x=\dfrac{13}{6}\\y=\dfrac{13}{152}\end{matrix}\right.\)

Vậy S={(\(\dfrac{13}{6};\dfrac{13}{152}\))}

c) ĐK xác định : x≠0;y≠0

ta có : \(\left\{{}\begin{matrix}\dfrac{2}{x}+\dfrac{7}{y}=21\\-\dfrac{2}{x}-\dfrac{5}{y}=-11\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}\dfrac{2}{y}=10\\\dfrac{2}{x}+\dfrac{7}{y}=21\end{matrix}\right.< =>\left\{{}\begin{matrix}y=\dfrac{1}{5}\\x=-\dfrac{1}{7}\end{matrix}\right.\)

Vậy S={(\(-\dfrac{1}{7};\dfrac{1}{5}\))}

d) ĐK xác định : x≠0;y≠0

ta có : \(\left\{{}\begin{matrix}\dfrac{9}{x}+\dfrac{2}{y}=22\\\dfrac{5}{x}-\dfrac{2}{y}=13\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}\dfrac{14}{x}=35\\\dfrac{5}{x}-\dfrac{2}{y}=13\end{matrix}\right.< =>\left\{{}\begin{matrix}x=\dfrac{2}{5}\\y=-4\end{matrix}\right.\)

Vậy S={(0,4;-4)}

e) ĐKXĐ : x≠0;y≠0

ta có : \(\left\{{}\begin{matrix}\dfrac{3}{x}+\dfrac{5}{y}=10\\-\dfrac{3}{x}-\dfrac{7}{y}=8\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}-\dfrac{2}{y}=18\\\dfrac{3}{x}+\dfrac{5}{y}=10\end{matrix}\right.< =>\left\{{}\begin{matrix}y=-\dfrac{1}{9}\\x=\dfrac{3}{55}\end{matrix}\right.\) 'Vậy....

a: 2x-3y-4z=24

Áp dụng tính chất của DTSBN, ta được:

\(\dfrac{x}{1}=\dfrac{y}{6}=\dfrac{z}{3}=\dfrac{2x-3y-4z}{2\cdot1-3\cdot6-4\cdot3}=\dfrac{24}{-28}=\dfrac{-6}{7}\)

=>x=-6/7; y=-36/7; z=-18/7

b: 6x=10y=15z

=>x/10=y/6=z/4=k

=>x=10k; y=6k; z=4k

x+y-z=90

=>10k+6k-4k=90

=>12k=90

=>k=7,5

=>x=75; y=45; z=30

d: x/4=y/3

=>x/20=y/15

y/5=z/3

=>y/15=z/9

=>x/20=y/15=z/9

Áp dụng tính chất của DTSBN, ta được:

\(\dfrac{x}{20}=\dfrac{y}{15}=\dfrac{z}{9}=\dfrac{x-y-z}{20-15-9}=\dfrac{-100}{-4}=25\)

=>x=500; y=375; z=225

NV
4 tháng 8 2021

a.

Đặt \(\dfrac{x}{5}=\dfrac{y}{3}=\dfrac{z}{4}=k\Rightarrow\left\{{}\begin{matrix}x=5k\\y=3k\\z=4k\end{matrix}\right.\)

Thế vào \(2x+y-z=81\)

\(\Rightarrow2.5k+3k-4k=81\)

\(\Rightarrow9k=81\)

\(\Rightarrow k=9\)

\(\Rightarrow\left\{{}\begin{matrix}x=5k=45\\y=3k=27\\z=4k=36\end{matrix}\right.\)

b.

Đặt \(\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{z}{2}=k\Rightarrow\left\{{}\begin{matrix}x=3k\\y=5k\\z=2k\end{matrix}\right.\)

Thế vào \(5x-y+3z=124\)

\(\Rightarrow5.3k-5k+3.2k=124\)

\(\Rightarrow16k=124\)

\(\Rightarrow k=\dfrac{31}{4}\) \(\Rightarrow\left\{{}\begin{matrix}x=3k=\dfrac{93}{4}\\y=5k=\dfrac{155}{4}\\z=2k=\dfrac{31}{2}\end{matrix}\right.\)

NV
4 tháng 8 2021

c.

Đặt \(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}=k\Rightarrow\left\{{}\begin{matrix}x=2k\\y=3k\\z=5k\end{matrix}\right.\)

Thế vào \(xyz=810\)

\(\Rightarrow2k.3k.5k=810\)

\(\Rightarrow k^3=27\)

\(\Rightarrow k=3\)

\(\Rightarrow\left\{{}\begin{matrix}x=2k=6\\y=3k=9\\z=5k=15\end{matrix}\right.\)

AH
Akai Haruma
Giáo viên
22 tháng 7 2021

Lời giải:

a. $\frac{x}{7}=\frac{6}{21}$

$x=\frac{6}{21}.7$

$x=2$

b.

$\frac{-5}{y}=\frac{20}{28}$

$y=-5:\frac{20}{28}$

$y=-7$

c.

$\frac{-4}{8}=\frac{-7}{y}$

$y=-7:\frac{-4}{8}$

$y=14$

 

22 tháng 7 2021

a, \(\dfrac{x}{7}=\dfrac{6}{21}\Leftrightarrow\dfrac{3x}{21}=\dfrac{6}{21}\Rightarrow x=2\)

b, \(\dfrac{-5}{y}=\dfrac{20}{28}\Leftrightarrow\dfrac{20}{-4y}=\dfrac{20}{28}\Leftrightarrow y=-7\)

c, \(\dfrac{-4}{8}=-\dfrac{7}{y}\Rightarrow-4y=-56\Leftrightarrow y=14\)

12 tháng 12 2021

7) vì \(\dfrac{x}{5}\)=\(\dfrac{y}{6}\)=\(\dfrac{z}{7}\)và x-y+z=36

Nên theo tính chất của dãy tỉ số bằng nhau ta có:

 \(\dfrac{x}{5}\)=\(\dfrac{y}{6}\)=\(\dfrac{z}{7}\)=\(\dfrac{x-y+z}{5-6+7}\)=\(\dfrac{36}{6}\)=6

 \(\Rightarrow\)x=6.5=30

     y=6.6=36

     z=6.7=42

vậy x=30,y=36,z=42

 

 

7 tháng 12 2021

\(1,\dfrac{x}{2}=\dfrac{y}{5}=\dfrac{x+y}{2+5}=\dfrac{21}{7}=3\\ \Rightarrow\left\{{}\begin{matrix}x=6\\y=15\end{matrix}\right.\\ 2,7x=3y\Rightarrow\dfrac{x}{3}=\dfrac{y}{7}=\dfrac{x-y}{3-7}=\dfrac{16}{-4}=-4\\ \Rightarrow\left\{{}\begin{matrix}x=-12\\y=-28\end{matrix}\right.\\ 3,\dfrac{x}{5}=\dfrac{y}{6}=\dfrac{z}{7}=\dfrac{x-y-z}{5-6-7}=\dfrac{36}{-8}=-\dfrac{9}{2}\\ \Rightarrow\left\{{}\begin{matrix}x=-\dfrac{45}{2}\\y=-27\\z=-\dfrac{63}{2}\end{matrix}\right.\\ 4,x:y:z=3:5:7\Rightarrow\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{z}{7}=\dfrac{2x+3y-z}{6+15-7}=\dfrac{-14}{14}=-1\\ \Rightarrow\left\{{}\begin{matrix}x=-3\\y=-5\\z=-7\end{matrix}\right.\)

7 tháng 12 2021

3. Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(\dfrac{x}{5}=\dfrac{y}{6}=\dfrac{z}{7}=\dfrac{x-y-z}{5-6-7}=\dfrac{36}{-8}=\dfrac{-9}{2}\)

\(x=\dfrac{-45}{2}\)

\(y=-27\)

\(z=\dfrac{-63}{2}\)

4 tháng 1 2022

a) \(\dfrac{5}{x}=\dfrac{-10}{12}.\Rightarrow x=-6.\)

b) \(\dfrac{4}{-6}=\dfrac{x+3}{9}.\Rightarrow x+3=-6.\Leftrightarrow x=-9.\)

c) \(\dfrac{x-1}{25}=\dfrac{4}{x-1}.\left(đk:x\ne1\right).\Leftrightarrow\dfrac{x-1}{25}-\dfrac{4}{x-1}=0.\)

\(\Leftrightarrow\dfrac{x^2-2x+1-100}{25\left(x-1\right)}=0.\Leftrightarrow x^2-2x-99=0.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=11.\\x=-9.\end{matrix}\right.\) \(\left(TM\right).\)

 

 

11 tháng 10 2023

b:

ĐKXĐ: x<>0

 \(\dfrac{2}{x}+\dfrac{y}{3}=\dfrac{1}{6}\)

=>\(\dfrac{6+xy}{3x}=\dfrac{1}{6}\)

=>\(6\left(6+xy\right)=3x\)

=>\(x=2\left(6+xy\right)=12+2xy\)

=>\(x\left(1-2y\right)=12\)

mà x,y là các số nguyên

nên \(\left(x;1-2y\right)\in\left\{\left(12;1\right);\left(-12;-1\right);\left(4;3\right);\left(-4;-3\right)\right\}\)

=>\(\left(x,y\right)\in\left\{\left(12;0\right);\left(-12;1\right);\left(4;-1\right);\left(-4;2\right)\right\}\)

c: ĐKXĐ: y<>-1

\(\dfrac{x}{3}+\dfrac{1}{y+1}=\dfrac{1}{6}\)

=>\(\dfrac{xy+x+3}{3\left(y+1\right)}=\dfrac{1}{6}\)

=>\(\dfrac{2\left(xy+x+3\right)}{6\left(y+1\right)}=\dfrac{y+1}{6\left(y+1\right)}\)

=>\(2xy+2x+6=y+1\)

=>\(2x\left(y+1\right)-\left(y+1\right)=-6\)

=>\(\left(2x-1\right)\left(y+1\right)=-6\)

mà x,y là các số nguyên

nên \(\left(2x-1;y+1\right)\in\left\{\left(1;-6\right);\left(-1;6\right);\left(3;-2\right);\left(-3;2\right)\right\}\)

=>\(\left(x,y\right)\in\left\{\left(1;-7\right);\left(0;5\right);\left(2;-3\right);\left(-1;1\right)\right\}\)

a: \(\dfrac{x}{6}=\dfrac{y}{-3}\)

mà x-y=27

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{6}=\dfrac{y}{-3}=\dfrac{x-y}{6-\left(-3\right)}=\dfrac{27}{9}=3\)

=>\(x=3\cdot6=18;y=-3\cdot3=-9\)

b: \(\dfrac{x}{8}=\dfrac{y}{1,5}\)

mà x-4y=-0,2

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{8}=\dfrac{y}{1,5}=\dfrac{x-4y}{8-4\cdot1,5}=\dfrac{-0.2}{2}=-0.1\)

=>\(x=-0,1\cdot8=-0,8;y=-0,1\cdot1,5=-0,15\)

c: \(\dfrac{x}{y}=\dfrac{11}{13}\)

=>\(\dfrac{x}{11}=\dfrac{y}{13}\)

mà 2x+3y=122

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{11}=\dfrac{y}{13}=\dfrac{2x+3y}{2\cdot11+3\cdot13}=\dfrac{122}{61}=2\)

=>\(x=2\cdot11=22;y=2\cdot13=26\)

d: \(\dfrac{x}{y}=\dfrac{5}{-3}\)

=>\(\dfrac{x}{5}=\dfrac{y}{-3}\)

mà 3x-2y=42

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{5}=\dfrac{y}{-3}=\dfrac{3x-2y}{3\cdot5-2\cdot\left(-3\right)}=\dfrac{42}{21}=2\)

=>\(x=2\cdot5=10;y=2\cdot\left(-3\right)=-6\)

e: 3x=5y

=>\(\dfrac{x}{5}=\dfrac{y}{3}\)

mà x-y=10,2(vì y-x=-10,2)

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{5}=\dfrac{y}{3}=\dfrac{x-y}{5-3}=\dfrac{10.2}{2}=5.1\)

=>\(x=5,1\cdot5=25,5;y=5,1\cdot3=15,3\)

NV
23 tháng 2 2019

a/ Do \(x+y=22\Rightarrow y=22-x\)

\(\Rightarrow\dfrac{4+x}{7+22-x}=\dfrac{4}{7}\Leftrightarrow\dfrac{4+x}{29-x}=\dfrac{4}{7}\)

\(\Leftrightarrow7\left(4+x\right)=4\left(29-x\right)\Leftrightarrow28+7x=116-4x\)

\(\Leftrightarrow11x=88\Rightarrow x=8\)

\(\Rightarrow y=22-x=14\)

b/ \(\dfrac{x}{3}=\dfrac{y}{4}\Rightarrow y=\dfrac{4x}{3}\)

\(\dfrac{y}{5}=\dfrac{z}{6}\Rightarrow z=\dfrac{6y}{5}\) \(\Rightarrow z=\dfrac{6}{5}\left(\dfrac{4x}{3}\right)=\dfrac{8x}{5}\)

Vậy \(M=\dfrac{2x+3y+4z}{3x+4y+5z}=\dfrac{2x+3.\dfrac{4x}{3}+4.\dfrac{8x}{5}}{3x+4.\dfrac{4x}{3}+5.\dfrac{8x}{5}}\)

\(\Rightarrow M=\dfrac{x\left(2+4+\dfrac{32}{5}\right)}{x\left(3+\dfrac{16}{3}+8\right)}=\dfrac{\dfrac{62}{5}}{\dfrac{49}{3}}=\dfrac{186}{245}\)

23 tháng 2 2019

Câu a:

Ta có: \(x+y=22\Rightarrow y=22-x\)

\(\Rightarrow\dfrac{4+x}{7+22-x}=\dfrac{4}{7}\Leftrightarrow\dfrac{4+x}{29-x}=\dfrac{4}{7}\)

\(\Leftrightarrow7\left(4+x\right)=4\left(29-x\right)\Leftrightarrow28+7x=116-4x\)

\(\Leftrightarrow11x=88\Rightarrow x=8\)

\(\Rightarrow y=22-x=22-8=14\)

Vậy \(x=8,y=14\)