Tìm tất cả các số nguyên dương x sao cho x^3 + x^2 + 2025 là một số chính phương nhỏ hơn 10000
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Giả sử tồn tại số nguyên n sao cho \(n^2+2002\)là số chình phương.
\(\Rightarrow n^2+2002=a^2\left(a\inℕ^∗\right)\)
\(\Rightarrow a^2-n^2=2002\)
\(\Rightarrow a^2+an-an-n^2=2002\)
\(\Rightarrow a\left(a+n\right)-n\left(a+n\right)=2002\)
\(\Rightarrow\left(a-n\right)\left(a+n\right)=2002\)
Mà \(2002⋮2\)\(\Rightarrow\orbr{\begin{cases}a-n⋮2\\a+n⋮2\end{cases}\left(1\right)}\)
Ta có : \(\left(a+n\right)-\left(a-n\right)=-2n\)
\(\Rightarrow\)\(a-n\)và \(a+n\)có cùng tính chẵn lẻ \(\left(2\right)\)
Từ \(\left(1\right)\)và \(\left(2\right)\): \(\Rightarrow\hept{\begin{cases}a-n⋮2\\a+n⋮2\end{cases}}\)
Vì 2 là số nguyên tố \(\Rightarrow\left(a-n\right)\left(a+n\right)⋮4\)
mà 2002 không chia hết cho 4
\(\Rightarrow\)Mâu thuẫn
\(\Rightarrow\)Điều giả sử là sai
\(\Rightarrow\)Không tồn tại số nguyên n thỏa mãn đề bài
Giả sử \(x^3+x^2+2025\) là số chính phương nhỏ hơn 10000. Ta có phương trình:
\(x^3+x^2+2025 =k^2(k \in N,k^2<10000 \Leftrightarrow k<100)\)
\(\Leftrightarrow \)\(2025=k^2-x^2(x+1)\)
\(\Leftrightarrow \)\(2025=(k-x\sqrt{x+1})(k+x\sqrt{x+1})\)
Mà \(k-x\sqrt{x+1} < k+x\sqrt{x+1}< 100\)(Vì \(k < 100\))
\(\Rightarrow \)\(\left[\begin{array}{} \begin{cases} k+x\sqrt{x+1}=81\\ k-x\sqrt{x+1}=25 \end{cases}\\ \begin{cases} k+x\sqrt{x+1}=75\\ k-x\sqrt{x+1}=27 \end{cases}\\ \end{array} \right.\)
\(\Leftrightarrow\)\(\left[\begin{array}{} \begin{cases} 2k=106\\ k-x\sqrt{x+1}=25 \end{cases}\\ \begin{cases} 2k=102\\ k-x\sqrt{x+1}=27 \end{cases}\\ \end{array} \right.\)
\(\Leftrightarrow\)\(\left[\begin{array}{} \begin{cases} k=53\\ 53-x\sqrt{x+1}=25 \end{cases}\\ \begin{cases} k=51\\ 51-x\sqrt{x+1}=27 \end{cases}\\ \end{array} \right.\)
\(\Leftrightarrow\)\(\left[\begin{array}{} \begin{cases} k=53\\ x\sqrt{x+1}=28 \end{cases}\\ \begin{cases} k=51\\ x\sqrt{x+1}=24 \end{cases}\\ \end{array} \right.\)
\(\Leftrightarrow\)\(\left[\begin{array}{} \begin{cases} k=53\\ x^3+x^2-784=0 \end{cases}\\ \begin{cases} k=51\\ x^3+x^2-576=0 \end{cases}\\ \end{array} \right.\)
\(\Leftrightarrow\)\(\left[\begin{array}{} \begin{cases} k=53\\ x^3+x^2-784=0(PTVN) \end{cases}\\ \begin{cases} k=51\\ x^3-8x^2+9x^2-72x+72x-576=0 \end{cases}\\ \end{array} \right.\)
\(\Leftrightarrow\)\(\begin{cases} k=51\\ (x-8)(x^2+9x+72)=0 \end{cases}\)
\(\Leftrightarrow\)\(\begin{cases} k=51(t/m)\\ \left[\begin{array}{} x=8(t/m)\\ (x+\frac{9}{2})^2+\frac{207}{4}=0(PTVN) \end{array} \right. \end{cases}\)
Vậy chỉ có giá trị \(x=8\) thỏa mãn yêu cầu bài toán.
P/s: Cái c/m vô nghiệm kia mình không biết làm. Chỉ biết bấm máy tính không ra nghiệm nguyên