Tìm hai số tự nhiên a, b sao cho Tổng của ƯCLN và BCNN là 15.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) goi hai so la a ; b va a >b
vi UCLN(a,b)=18=>a=18k ; b=18q (trong do UCLN (k,q)=1 va k>q)
=>a+b=162
18k+18q =162
18(k+q)=162
k+q=9
ta co bang sau | |||||||||||||||||||||||
vay ........... | |||||||||||||||||||||||
21453
52542000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 | 542454550212.100000000000000000000000000000000000000000000000000000000000000000000000000000 |
Lời giải:
Gọi $ƯCLN(a,b)=d$ thì đặt $a=dx, b=dy$ với $x,y$ là số tự nhiên, $x,y$ nguyên tố cùng nhau.
Khi đó:
$ƯCLN(a,b)+BCNN(a,b)=d+dxy=15$
$\Rightarrow d(1+xy)=15$
$\Rightarrow 15\vdots d\Rightarrow d\in \left\{1; 3; 5; 15\right\}$
Nếu $d=1\Rightarrow 1+xy=15$
$\Rightarrow xy=14\Rightarrow (x,y)=(1,14), (2,7), (7,2), (14,1)$ do $x,y$ nguyên tố cùng nhau.
$\Rightarrow (a,b)=(dx,dy)=(1,14), (2,7), (7,2), (14,1)$
Nếu $d=3\Rightarrow 1+xy=5$
$\Rightarrow xy=4\Rightarrow (x,y)=(1,4), (4,1)$ do $x,y$ nguyên tố cùng nhau
$\Rightarrow (a,b)=(dx,dy)=(3,12), (12,3)$
Nếu $d=5$ thì $1+xy=3\Rightarrow xy=2\Rightarrow (x,y)=(1,2), (2,1)$
$\Rightarrow (a,b)=(5,10)< (10,5)$
Nếu $d=15$ thì $1+xy=1\Rightarrow xy=0$ (vô lý - loại)