K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
26 tháng 1 2024

Biểu thức A không có min bạn nhé. Bạn xem lại đề.

NV
6 tháng 1 2022

1.

\(G=\dfrac{2}{x^2+8}\le\dfrac{2}{8}=\dfrac{1}{4}\)

\(G_{max}=\dfrac{1}{4}\) khi \(x=0\)

\(H=\dfrac{-3}{x^2-5x+1}\) biểu thức này ko có min max

2.

\(D=\dfrac{2x^2-16x+41}{x^2-8x+22}=\dfrac{2\left(x^2-8x+22\right)-3}{x^2-8x+22}=2-\dfrac{3}{\left(x-4\right)^2+6}\ge2-\dfrac{3}{6}=\dfrac{3}{2}\)

\(D_{min}=\dfrac{3}{2}\) khi \(x=4\)

\(E=\dfrac{4x^4-x^2-1}{\left(x^2+1\right)^2}=\dfrac{-\left(x^4+2x^2+1\right)+5x^4+x^2}{\left(x^2+1\right)^2}=-1+\dfrac{5x^4+x^2}{\left(x^2+1\right)^2}\ge-1\)

\(E_{min}=-1\) khi \(x=0\)

\(G=\dfrac{3\left(x^2-4x+5\right)-5}{x^2-4x+5}=3-\dfrac{5}{\left(x-2\right)^2+1}\ge3-\dfrac{5}{1}=-2\)

\(G_{min}=-2\) khi \(x=2\)

3 tháng 9 2021

Giusp e ạ !

AH
Akai Haruma
Giáo viên
27 tháng 1 2024

Lời giải:
\(A=\frac{4}{1-x}+\frac{1}{x^2(1-x)}\)

Áp dụng BĐT Cô-si:

$\frac{4}{1-x}+16(1-x)\geq 2\sqrt{4.16}=16$

$\frac{1}{x^2(1-x)}+16x+16x+16(1-x)\geq 4\sqrt[4]{16.16.16}=32$

Cộng theo vế 2 BĐT trên và thu gọn:

$A+32\geq 16+32$

$\Leftrightarrow A\geq 16$

Vậy $A_{\min}=16$ khi $x=\frac{1}{2}$

15 tháng 4 2018

a)

\(A=\dfrac{2x^2-16x+41}{x^2-8x+22}=\dfrac{2\left(x^2-8x+22\right)-3}{x^2-8x+22}\)

\(A-2=-\dfrac{3}{x^2-8x+22}=-\dfrac{3}{\left(x-4\right)^2+6}\ge-\dfrac{3}{6}=-\dfrac{1}{2}\)

\(A\ge\dfrac{3}{2}\) khi x =4

AH
Akai Haruma
Giáo viên
17 tháng 3 2021

Lời giải:

Áp dụng BĐT AM-GM:

$P=(a+1)+\frac{2}{a+1}+2\geq 2\sqrt{(a+1).\frac{2}{a+1}}+2=2\sqrt{2}+2$

Vậy $P_{\min}=2\sqrt{2}+2$

Giá trị này đạt tại $(a+1)^2=2; a>0\Leftrightarrow a=\sqrt{2}-1$

------------------------

Bổ sung ĐK: $a>1$

$X=\frac{a^2-1+2}{a-1}=a+1+\frac{2}{a-1}$

$=(a-1)+\frac{2}{a-1}+2$

$\geq 2\sqrt{2}+2$ (AM-GM)

Vậy $X_{\min}=2\sqrt{2}+2$
Giá trị đạt tại $(a-1)^2=\sqrt{2}; a>1\Leftrightarrow a=\sqrt{2}+1$

17 tháng 3 2021

Cô ơi giúp em câu em vừa gửi ạ

NV
23 tháng 8 2021

Ta chứng minh BĐT sau:

Ta có: \(x\left(3-4x^2\right)=-4x^3+3x-1+1=1-\left(x+1\right)\left(2x-1\right)^2\le1\)

\(\Rightarrow\dfrac{4x^2}{x\left(3-4x^2\right)}\ge\dfrac{4x^2}{1}=4x^2\)

Tương tự và cộng lại:

\(Q\ge4\left(x^2+y^2+z^2\right)\ge4\left(xy+yz+zx\right)=3\)

Dấu "=" xảy ra khi \(x=y=z=\dfrac{1}{2}\)

NV
9 tháng 4 2021

\(P=\dfrac{4x^2+2xy-\left(x^2+y^2\right)}{2xy-2y^2+3\left(x^2+y^2\right)}=\dfrac{3x^2+2xy-y^2}{3x^2+2xy+y^2}\)

Biểu thức này không tồn tại max mà chỉ tồn tại min

\(P=\dfrac{-2\left(3x^2+2xy+y^2\right)+9x^2+6xy+y^2}{3x^2+2xy+y^2}=-2+\dfrac{\left(3x+y\right)^2}{2x^2+\left(x+y\right)^2}\ge-2\)

NV
8 tháng 4 2021

Bạn coi lại mẫu số