K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 8 2017

KHÓ THẾ

25 tháng 8 2017
Thay x=y+1 Ta được max=0 <=> x =0
1 tháng 6 2024

Có sai không bạn

NV
23 tháng 12 2020

\(x^2+2xy+y^2+6\left(x+y\right)+8=-y^2\)

\(\Leftrightarrow\left(x+y\right)^2+6\left(x+y\right)+8\le0\)

\(\Leftrightarrow\left(x+y+2\right)\left(x+y+4\right)\le0\)

\(\Rightarrow-4\le x+y\le-2\)

\(\Rightarrow2016\le B\le2018\)

\(B_{min}=2016\) khi \(\left(x;y\right)=\left(-4;0\right)\)

\(B_{max}=2018\) khi \(\left(x;y\right)=\left(-2;0\right)\)

AH
Akai Haruma
Giáo viên
25 tháng 8 2017

Lời giải:

Ta có thể tìm được \(M=x^2y^3\) max khi \(y>0\). Vậy coi bài toán là:

Cho \(x,y>0\) thỏa mãn \(x+y=1\)

Tìm max \(M=x^2y^3\)

Thay \(x=1-y\Rightarrow M=y^3(1-y)^2\)

Áp dụng BĐT AM-GM:

\(M=\frac{27}{8}.\left(\frac{2}{3}y\right)\left(\frac{2}{3}y\right)\left(\frac{2}{3}y\right)(1-y)(1-y)\)

\(\leq \frac{27}{8}\left (\frac{\frac{2}{3}y+\frac{2}{3}y+\frac{2}{3}y+1-y+1-y}{5}\right)^5=\frac{27}{8}.\left(\frac{2}{5}\right)^5=\frac{108}{3125}\)

Vậy \(M_{\max}=\frac{108}{3125}\)

Dấu bằng xảy ra khi \(\frac{2}{3}y=1-y\Rightarrow y=\frac{3}{5}\Rightarrow x=\frac{2}{5}\)

x+y=1

=>(x+y)^2=1

(x+y)^2>=4xy

=>1>=4xy

=>xy<=1/4

=>x^2y^2<=1/16

=>x^2y^3<1/16

19 tháng 4 2023

xem lại điều kiện của x đi bạn, để vậy không tìm được đâu =_)

5 tháng 5 2021

pro rồi thì bạn cần gì mình giải nhỉ

??

NV
5 tháng 5 2021

\(A=x-2y+3\Rightarrow x=A+2y-3\)

\(\Rightarrow\left(2y+A-3\right)^2+y\left(A+2y-3\right)+2y^2=1\)

\(\Leftrightarrow8y^2+\left(5A-15\right)y+A^2-6A+8=0\)

\(\Delta=\left(5A-15\right)^2-32\left(A^2-6A+8\right)\ge0\)

\(\Leftrightarrow-7A^2+42A-31\ge0\)

\(\Rightarrow\dfrac{21-4\sqrt{14}}{7}\le A\le\dfrac{21+4\sqrt{14}}{7}\)

17 tháng 2 2022

\(\left\{{}\begin{matrix}x+my=3\\x+2y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left(m-2\right)y=2\\x=1-2y\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{2}{m-2}\\x=1-\dfrac{4}{m-2}=\dfrac{m-6}{m-2}\end{matrix}\right.\)

a, Ta có x < 0 ; y > 0 

\(x< 0\Rightarrow\dfrac{m-6}{m-2}< 0\)

Ta có : m - 2 > m - 6 

\(\left\{{}\begin{matrix}m-2>0\\m-6< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m>2\\m< 6\end{matrix}\right.\Leftrightarrow2< m< 6\)

\(y>0\Leftrightarrow\dfrac{2}{m-2}>0\Rightarrow m>2\)

Vậy 2 < m < 6 

b, \(x-2y=3\Rightarrow\dfrac{m-6}{m-2}-\dfrac{4}{m-2}=3\Leftrightarrow\dfrac{m-10}{m-2}=3\)

\(\Rightarrow m-10=3m-6\Leftrightarrow2m=-4\Leftrightarrow m=-2\)

2 tháng 7 2017

1, A= y^3(1-y)^2 = 4/9 . y^3 . 9/4 (1-y)^2

= 4/9 .y.y.y . (3/2-3/2.y)^2

=4/9 .y.y.y (3/2-3/2.y)(3/2-3/2.y)

<= 4/9 (y+y+y+3/2-3/2.y+3/2-3/2.y)^5

=4/9 . 243/3125

=108/3125

Đến đó tự giải

2 tháng 7 2017


Thử sức với bài 1 xem thế nào :vv
x>0 => 0<x<=1 
f(x)=x^2(1-x)^3
Xét f'(x) = -(x-1)^2x(5x-2) 
Xét f'(x)=0 -> nhận x=2/5 và x=1thỏa mãn đk trên .
 Thử x=1 và x=2/5 nhận x=2/5 hàm số Max tại ddk 0<x<=1 (vậy x=1 loại)
P/s: HS cấp II hong nên làm cách này nhé em :vv 
 

18 tháng 5 2019

\(\sqrt{1+\sqrt{2}}.P=\sqrt{1+2x}.\sqrt{1+\sqrt{2}}+\sqrt{1+2y}.\sqrt{1+\sqrt{2}}\)

Áp dụng BĐT AM-GM ta có:

\(\sqrt{1+\sqrt{2}}.P\le\frac{1+2x+1+\sqrt{2}+1+2y+1+\sqrt{2}}{2}\)

Áp dụng BĐT Cauchy-schwarz ta có:

\(x^2+y^2\ge\frac{\left(x+y\right)^2}{2}\)

\(\Leftrightarrow\sqrt{2}\ge x+y\)

Dấu " = " xảy ra \(\Leftrightarrow x=y=\frac{1}{\sqrt{2}}\)

\(\Rightarrow\sqrt{1+\sqrt{2}}P\le\frac{1+2x+1+\sqrt{2}+1+2y+1+\sqrt{2}}{2}\le\frac{4+2.\sqrt{2}+2.\sqrt{2}}{2}=2+2\sqrt{2}\)

\(\Leftrightarrow P\le\frac{2+2.\sqrt{2}}{\sqrt{1+\sqrt{2}}}\)

Dấu " = " xảy ra \(\Leftrightarrow x=y=\frac{1}{\sqrt{2}}\)

Mới nghĩ ra được max. Các cao nhân ai thấy sai thì sửa hộ e nhé.

 
18 tháng 5 2019

áp dụng bất đẳng thức bunhiacopxki 

\(P^2=\left(1.\sqrt{1+2x}+1.\sqrt{1+2y}\right)^2\le\left(1^2+1^2\right)\left(1+2x+1+2y\right)\)

    \(=4\left(1+x+y\right)\)

Lại có \(\left(x.1+y.1\right)^2\le\left(x^2+y^2\right)\left(1^2+1^2\right)\Leftrightarrow\left(x+y\right)^2\le2\left(x^2+y^2\right)=2.\)

\(\Rightarrow|x+y|\le\sqrt{2}.\Rightarrow-\sqrt{2}\le x+y\le\sqrt{2}\Leftrightarrow-\sqrt{2}+1\le1+x+y\le\sqrt{2}+1\)

\(\Rightarrow P^2\le4\left(1+x+y\right)\le4.\left(\sqrt{2}+1\right)\)

\(\Leftrightarrow-2\sqrt{\sqrt{2}+1}\le P\le2\sqrt{\sqrt{2}+1}\)

Vậy Max \(P=2\sqrt{\sqrt{2}+1}\Leftrightarrow x=y=\frac{1}{\sqrt{2}}.\)

sorry nhìu , nếu có đk x, y>=0 thì mk mới tìm được minP=3 

nếu k phải thì mong cao nhân chỉ cho ak