tìm x thuộc n biết
a) 5 ( x -3 ) =15
b) 3^x =27
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: =>3^x=3^4*3=3^5
=>x=5
b: =>\(2^{x+1}=2^5\)
=>x+1=5
=>x=4
c: \(\Leftrightarrow3^{x+2-3}=3\)
=>x-1=1
=>x=2
d: \(\Leftrightarrow x^2=\dfrac{32}{2}=16\)
=>x=4 hoặc x=-4
e: (2x-1)^4=81
=>2x-1=3 hoặc 2x-1=-3
=>2x=4 hoặc 2x=-2
=>x=-1 hoặc x=2
f: (2x-6)^4=0
=>2x-6=0
=>x-3=0
=>x=3
a) \(3^x=81\cdot3\)
\(\Rightarrow3^x=3^4\cdot3\)
\(\Rightarrow3^x=3^5\)
\(\Rightarrow x=5\)
b) \(2^{x+1}=32\)
\(\Rightarrow2^{x+1}=2^5\)
\(\Rightarrow x+1=5\)
\(\Rightarrow x=4\)
c) \(3^{x+2}:27=3\)
\(\Rightarrow3^{x+2}:3^3=3\)
\(\Rightarrow3^{x+2-3}=3\)
\(\Rightarrow3^{x-1}=3\)
\(\Rightarrow x-1=1\)
\(\Rightarrow x=2\)
d) \(2x^2=32\)
\(\Rightarrow x^2=16\)
\(\Rightarrow x^2=4^2\)
\(\Rightarrow\left[{}\begin{matrix}x=4\\x=-4\end{matrix}\right.\)
e) \(\left(2x-1\right)^4=81\)
\(\Rightarrow\left(2x-1\right)^4=3^4\)
\(\Rightarrow\left[{}\begin{matrix}2x-1=3\\2x-1=-3\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}2x=4\\2x=-2\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\)
f) \(\left(2x-6\right)^4=0\)
\(\Rightarrow2x-6=0\)
\(\Rightarrow2x=6\)
\(\Rightarrow x=6:2\)
\(\Rightarrow x=3\)
Bài 1:
a) Ta có: \(\dfrac{17}{6}-x\left(x-\dfrac{7}{6}\right)=\dfrac{7}{4}\)
\(\Leftrightarrow\dfrac{17}{6}-x^2+\dfrac{7}{6}x-\dfrac{7}{4}=0\)
\(\Leftrightarrow-x^2+\dfrac{7}{6}x+\dfrac{13}{12}=0\)
\(\Leftrightarrow-12x^2+14x+13=0\)
\(\Delta=14^2-4\cdot\left(-12\right)\cdot13=196+624=820\)
Vì Δ>0 nên phương trình có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}x_1=\dfrac{14-2\sqrt{205}}{-24}=\dfrac{-7+\sqrt{205}}{12}\\x_2=\dfrac{14+2\sqrt{2015}}{-24}=\dfrac{-7-\sqrt{205}}{12}\end{matrix}\right.\)
b) Ta có: \(\dfrac{3}{35}-\left(\dfrac{3}{5}-x\right)=\dfrac{2}{7}\)
\(\Leftrightarrow\dfrac{3}{5}-x=\dfrac{3}{35}-\dfrac{10}{35}=\dfrac{-7}{35}=\dfrac{-1}{5}\)
hay \(x=\dfrac{3}{5}-\dfrac{-1}{5}=\dfrac{3}{5}+\dfrac{1}{5}=\dfrac{4}{5}\)
Bài 1
a) \(x=x^5\)
\(x^5-x=0\)
\(x\left(x^4-1\right)=0\)
\(x=0\) hoặc \(x^4-1=0\)
* \(x^4-1=0\)
\(x^4=1\)
\(x=1\)
Vậy x = 0; x = 1
b) \(x^4=x^2\)
\(x^4-x^2=0\)
\(x^2\left(x^2-1\right)=0\)
\(x^2=0\) hoặc \(x^2-1=0\)
*) \(x^2=0\)
\(x=0\)
*) \(x^2-1=0\)
\(x^2=1\)
\(x=1\)
Vậy \(x=0\); \(x=1\)
c) \(\left(x-1\right)^3=x-1\)
\(\left(x-1\right)^3-\left(x-1\right)=0\)
\(\left(x-1\right)\left[\left(x-1\right)^2-1\right]=0\)
\(x-1=0\) hoặc \(\left(x-1\right)^2-1=0\)
*) \(x-1=0\)
\(x=1\)
*) \(\left(x-1\right)^2-1=0\)
\(\left(x-1\right)^2=1\)
\(x-1=1\) hoặc \(x-1=-1\)
**) \(x-1=1\)
\(x=2\)
**) \(x-1=-1\)
\(x=0\)
Vậy \(x=0\); \(x=1\); \(x=2\)
a: =>2x-x=-5/2-1/3
=>x=-17/6
b: =>4(x-2)2=36
=>(x-2)2=9
=>x-2=3 hoặc x-2=-3
hay x=5 hoặc x=-1
c: =>2x+1/2=5/6
=>2x=1/3
hay x=1/6
Lời giải:
a.
$(x-15).27=0$
$x-15=0:27=0$
$x=15+0=15$
b.
$23(42-x)=0$
$42-x=0$
$x=42$
c.
$(9x+2).3=60$
$9x+2=60:3=20$
$9x=18$
$x=2$
d.
$71+(26-3x):5=75$
$(26-3x):5=75-71=4$
$26-3x=4.5=20$
$3x=26-20=6$
$x=6:2=3$
a: =>(2x-1)^3=4^12:4^10=4^2=8
=>2x-1=2
=>2x=3
=>x=3/2(loại)
b: 6x+5 chia hết cho 3x-1
=>6x-2+7 chia hết cho 3x-1
=>7 chia hết cho 3x-1
mà x là số tự nhiên
nên 3n-1=-1
=>n=0
Câu 1
a)(-9)+(-3) = -9 - 3 = -12
b)6.7.52+42.75 = 42. 25 + 42. 75 = 42(25 + 75) = 42. 100 = 4200
c)4529-(186+4529) = 4529 - 186 - 4529 = -186
Câu 2
a)x-7=15
<=> x = 15 + 7
<=> x = 22
b)9+4.(x-5)=17
<=> 9 + 4x - 20 = 17
<=> 4x = 28
<=> x = 7
c)(x-3)3=27
<=> (x - 3)3 = 33
=> x - 3 = 3
<=> x = 6
Câu 1:
a) Ta có: (-9)+(-3)
=-(9+3)
=-12
b) Ta có: \(6\cdot7\cdot5^2+42\cdot75\)
\(=6\cdot7\cdot5^2+6\cdot7\cdot5^2\cdot3\)
\(=6\cdot7\cdot5^2\cdot\left(1+3\right)\)
\(=6\cdot7\cdot25\cdot4\)
\(=42\cdot100=4200\)
c) Ta có: 4529-(186+4529)
=4529-186-4529
=-186
Câu 2:
a) Ta có: x-7=15
\(\Leftrightarrow x=15+7\)
hay x=22
Vậy: x=22
b) Ta có: \(9+4\left(x-5\right)=17\)
\(\Leftrightarrow9+4x-20=17\)
\(\Leftrightarrow4x-11=17\)
\(\Leftrightarrow4x=28\)
hay x=7
Vậy: x=7
c) Ta có: \(\left(x-3\right)^3=27\)
\(\Leftrightarrow\left(x-3\right)^3=3^3\)
\(\Leftrightarrow x-3=3\)
hay x=6
Vậy: x=6
b ) 3 x = 27
mà 27 = 3x3x3
=> x= 3
thử lại .........
b ) 3 x = 27
mà 27 = 3x3x3
=> x= 3
thử lại .........