(x+1)+(2x+3)+(3x+5)+....+(100x+199)=3020
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


( x + 1 ) + ( 2x + 3 ) + ( 3x + 5 ) + ... + ( 100x + 199 ) = 30200
( x + 2x + 3x + ... + 100x ) + ( 1 + 3 + 5 + ... + 199 ) = 30200
x . ( 1 + 2 + 3 + ... + 100 ) + ( 1 + 3 + 5 + ... 199 ) = 30200
5050x + 10000 = 30200
5050x = 30200 - 10000
5050x = 20200
x = 20200 : 5050
x = 4

a: x+2x+3x+...+2011x=2012*2013
=>\(x\left(1+2+\cdots+2011\right)=2012\cdot2013\)
=>\(x\cdot2011\cdot\frac{2012}{2}=2012\cdot2013\)
=>\(x=\frac{2012\cdot2013}{2011\cdot1006}=\frac{2\cdot2013}{2011}=\frac{4026}{2011}\)
b: Đặt A=1+3+5+...+99
Số số hạng trong dãy số là:
\(\frac{99-1}{2}+1=\frac{98}{2}+1=49+1=50\) (số)
Tổng của dãy số là:
\(A=\left(99+1\right)\cdot\frac{50}{2}=50\cdot50=2500\)
Ta có: \(1+3+5+\cdots+99=\left(x+1\right)^2\)
=>\(\left(x+1\right)^2=2500\)
=>\(\left[\begin{array}{l}x+1=50\\ x+1=-50\end{array}\right.\Rightarrow\left[\begin{array}{l}x=49\\ x=-51\end{array}\right.\)
c:
Đặt B=1+3+5+...+199
Số số hạng của dãy là:
\(\frac{199-1}{2}+1=\frac{198}{2}+1=99+1=100\) (số)
Tổng của dãy số là:
\(B=\left(199+1\right)\cdot\frac{100}{2}=100^2\)
(x+1)+(2x+3)+(3x+5)+...+(100x+199)=30200
=>(x+2x+3x+...+100x)+(1+3+5+...+199)=30200
=>\(x\left(1+2+\cdots+100\right)+\left(1+3+\cdots+199\right)=30200\)
=>\(x\cdot100\cdot\frac{101}{2}+10000=30200\)
=>\(x\cdot5050=20200\)
=>x=4

Lời giải:
$(x^2-x+1)+(x^2-2x+3)+(x^2-3x+5)+....+(x^2-100x+199)=300$
$\Leftrightarrow (x^2+x^2+...+x^2)-(x+2x+3x+...+100x)+(1+3+5+...+199)=300$
$\Leftrightarrow 100x^2-5050x+10000=300$
$\Leftrightarrow 2x^2-101x+200=6$
$\Leftrightarrow 2x^2-101x+194=0$
$\Leftrightarrow (2x-97)(x-2)=0$
$\Rightarrow x=\frac{97}{2}$ hoặc $x=2$

c) x.(1+2+3+4+...+100)=0
x.5050=0
x=0:5050=0
Vậy x=0
d) x.(1+2+3+4+5+...+100)=5050
x.5050=5050
x=1
Vậy x=1
e) x+1+x+2+x+3+x+4+...+x+100=5050
(x+x+x+x+...+x)+(1+2+3+4+...+100)=5050
100 số hạng x
x.100+5050=5050
x.100=0
x=0
Vậy x=0

5. Ta có: a(a - 1) - (a + 3)(a + 2) = a2 - a - a2 - 2a - 3a - 6
= -6a - 6 = -6(a + 1) \(⋮\)6
<=> -6(a + 1) \(⋮\)6 \(\forall\)a \(\in\)Z
<=> a(a - 1) - (a + 3)(a + 2) \(⋮\) 6 \(\forall\)a \(\in\)Z
6. Thay x = 99 vào biểu thức A, ta có:
A = 995 - 100.994 + 100. 993 - 100.992 + 100 . 99 - 9
A = 995 - (99 + 1).994 + (99 + 1).993 - (99 + 1).992 + (99 + 1).99 - 9
A = 995 - 995 - 994 + 994 + 993 - 993 - 992 + 992 + 99 - 9
A = 99 - 9
A = 90
Vậy ....
Bài 3:
(3x-1)(2x+7)-(x+1)(6x-5)=16.
=> 6x2+21x-2x-7-(6x2-5x+6x-5)=16
=> 6x2+21x-2x-7-6x2+5x-6x+5=16
=> 18x-2=16
=> 18x=16+2
=> 18x=18
=> x=1
Bài 4:
ta có : \(n\left(n+5\right)-\left(n-3\right)\left(n+2\right)=n^2+5n-\left(n^2+2n-3n-6\right)\)
\(=n^2+5n-n^2-2n+3n+6\)
\(=6n+6=6\left(n+1\right)⋮6\)
⇔6(n+1) chia hết cho 6 với mọi n là số nguyên
⇔n(n+5)−(n−3)(n+2) chia hết cho 6 với mọi n là số nguyên
vậy n(n+5)−(n−3)(n+2) chia hết cho 6 với mọi n là số nguyên (đpcm)
Bài 6:
\(A=x^5-100x^4+100x^3-100x^2+100x-9\)
\(\Rightarrow A=x^5-\left(99+1\right)x^4+\left(99+1\right)x^3-\left(99+1\right)x^2+\left(99+1\right)x-9\)
\(\Rightarrow A=x^5-99x^4-x^4+99x^3+x^3-99x^2-x^2+99x+x-9\)
\(\Rightarrow A=\left(x^5-99x^4\right)-\left(x^4-99x^3\right)+\left(x^3-99x^2\right)-\left(x^2-99x\right)+x-9\)
\(\Rightarrow A=x^4\left(x-99\right)-x^3\left(x-99\right)+x^2\left(x-99\right)-x\left(x-99\right)+x-9\)
\(\Rightarrow A=\left(x-99\right)\left(x^4-x^3+x^2-x\right)+x-9\)
Thay 99=x, ta được:
\(A=\left(x-x\right)\left(x^4-x^3+x^2-x\right)+x-9\)
\(\Rightarrow A=x-9\)
Thay x=99 ta được:
\(A=99-9=90\)

a . 2x + 48 = 60
2x = 60 - 48 = 12
x=12:2=6
b/3.(x+5)+8=80
3.(x+5)=80-8=72
x+5=72:3
x+5=24
x=24-5=19
c/2x+3x=50
x . ( 2 + 3 ) = 50
x.5=50
x=50:5=10
d/ x +2x+3x+.....+99x+100x=10100
lười suy nghĩ lắm
e/x.(x+2)=0
x=0 bởi vì 0 nhân với số 2 = 0

a: =>5x-2=0 hoặc 2x+1/3=0
=>x=-1/6 hoặc x=2/5
b: Đặt x/2=y/3=k
=>x=2k; y=3k
xy=54
=>6k^2=54
=>k^2=9
=>k=3 hoặc k=-3
TH1: k=3
=>x=6; y=9
TH2: k=-3
=>x=-6; y=-9
c: =>5050x=-213
=>x=-213/5050

b. \(\left(2x+1\right)+\left(4x+3\right)+\left(6x+5\right)+...+\left(100x+99\right)=7600\)
\(\rightarrow\left(2x+4x+6x+...+100x\right)+\left(1+3+5+...+99\right)=7600\)
\(\rightarrow\frac{\left(2x+100x\right).50}{2}+\frac{\left(1+99\right).50}{2}=7600\)
\(\rightarrow51x.50+50.50=7600\)
\(\rightarrow51x.50+2500=7600\)
\(\rightarrow51x.50=7600-2500\)
\(\rightarrow51x.50=5100\)
\(\rightarrow50x=100\)
\(\rightarrow x=\frac{100}{50}=2\)
Vậy x = 2
(x + 1) + (2x + 3) + (3x + 5) + ... + (100x + 199) = 3020
Ta phá ngoặc và chia thành 2 vế:
(x + 2x + 3x + ... + 100x) + (1 + 3 + 5 + ... + 199) = 3 020
Đầu tiên ta tính số lượng x. Ở đây là tổng dãy số:
1 + 2 + 3 + ... + 100
Có 100 số hạng tất cả. Tổng của chúng là:
(1 + 100) x 100 : 2 = 5 050
⇒ Có 5 050x
Tiếp theo, ta tính tổng dãy số:
1 + 3 + 5 + ... + 199
Số số hạng của dãy là: 100. Do nếu thêm vào các số hạng chẵn ở sau, ta sẽ được 1 dãy gồm 200 số hạng, vậy nên chỉ cần lấy 1 nửa của 200 là 100 thôi.
Vậy tổng của dãy số là: (1 + 199) x 100 : 2 = 10 000
Ta viết lại biểu thức ban đầu:
5 050x + 10 000 = 3 020
5 050x = 3 020 - 10 000
5 050x = -6980
x = \(\dfrac{-6980}{5050}\)
Vậy x = \(\dfrac{-6980}{5050}\)