K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 1 2024

Ta có:

10²⁰²¹ = 100...000 (2021 chữ số 0)

⇒ 10²⁰²¹ + 539 = 100...0539 (2018 chữ số 0)

⇒ Tổng các chữ số của 100...0539:

1 + 0 + 0 + ... + 0 + 5 + 3 + 9 = 18

Mà 18 ⋮ 9

⇒ 100...0539 ⋮ 9

Vậy (10²⁰²¹ + 539)/9 là một số tự nhiên

7 tháng 11 2022

Bạn Tham Khảo:

loading...

Theo đề, ta có: \(\dfrac{a+9}{a+43}=\dfrac{1}{3}\)

=>3a+27=a+43

=>a=16

11 tháng 5 2023

Ta có thể viết lại M dưới dạng:

M = (1/2³) + (2/3³ - 1/2³) + (3/4³ - 2/3³) + … + (2022/2023³ - 2021/2022³)

= (1/2³) + [(2/3³ - 1/2³) + (3/4³ - 2/3³)] + … + [(2022/2023³ - 2021/2022³) + (2023/2024³ - 2022/2023³)]

= (1/2³) + (1/3³ - 1/2³) + … + (1/2023³ - 1/2022³)

= 1/2³ + (1/2³ - 1/3³) + (1/3³ - 1/4³) + … + (1/2022³ - 1/2023³)

Ta sử dụng kết quả sau đây: Với mọi số nguyên dương n, ta có

1/n³ > 1/(n+1)³

Điều này có thể được chứng minh bằng cách sử dụng đạo hàm hoặc khai triển. Do đó,

1/2³ > 1/3³
1/3³ > 1/4³

1/2022³ > 1/2023³

Vậy ta có

M = 1/2³ + (1/2³ - 1/3³) + (1/3³ - 1/4³) + … + (1/2022³ - 1/2023³) < 1/2³ + 1/3³ + 1/4³ + … + 1/2023³

Để chứng minh rằng M không phải là một số tự nhiên, ta sẽ chứng minh rằng tổng các số mũ ba nghịch đảo từ 1 đến 2023 không phải là một số tự nhiên. Điều này có thể được chứng minh bằng phương pháp giả sử ngược lại và dẫn đến mâu thuẫn.

Giả sử tổng các số mũ ba nghịch đảo từ 1 đến 2023 là một số tự nhiên, ký hiệu là S. Ta có:

S = 1/1³ + 1/2³ + 1/3³ + … + 1/2023³

Với mọi số nguyên dương n, ta có:

1/n³ < 1/n(n-1)

Do đó,

1/1³ < 1/(1x2)
1/2³ < 1/(2x3)
1/3³ < 1/(3x4)
...

1/2023³ < 1/(2023x2024)

Tổng các số hạng bên phải có thể được viết lại dưới dạng:

1/(1x2) + 1/(2x3) + 1/(3x4) + … + 1/(2023x2024) = (1 - 1/2) + (1/2 - 1/3) + (1/3 - 1/4) + … + (1/2023 - 1/2024) = 1 - 1/2024 < 1

Vậy tổng các số mũ ba nghịch đảo từ 1 đến 2023 cũng nhỏ hơn 1. Điều này mâu thuẫn với giả sử ban đầu rằng tổng này là một số tự nhiên. Do đó, giá trị của M không phải là một số tự nhiên.

   
AH
Akai Haruma
Giáo viên
10 tháng 8 2021

Lời giải:
$M(2\sqrt{x}-3)=\sqrt{x}+2$

$\Leftrightarrow \sqrt{x}(2M-1)=3M-2$

$\Leftrightarrow x=(\frac{3M-2}{2M-1})^2$

Vì $x$ nguyên nên $\frac{3M-2}{2M-1}$ nguyên 

$\Rightarrow 3M-2\vdots 2M-1$

$\Leftrightarrow 6M-4\vdots 2M-1$
$\Leftrightarrow 3(2M-1)-1\vdots 2M-1$
$\Leftrightarrow 1\vdots 2M-1$

$\Rightarrow 2M-1\in\left\{\pm 1\right\}$

$\Rightarrow M=0;1$

$\Leftrightarrow x=4; 1$ (đều tm)

12 tháng 10 2017

TỚ CŨNG KHÔNG BIẾT.

CẬU BIẾT HOÁ GIẢI CÚ NÉM ZIC ZẮC KÉP WWW CỦA SHIROEMON KHÔNG ?

DD
12 tháng 6 2021

\(A=2021+720\div\left(X-9\right)\)

Để \(A\)lớn nhất thì \(720\div\left(X-9\right)\)lớn nhất, khi đó \(X-9\)là số tự nhiên nhỏ nhất. 

Hay \(X-9=1\)

\(\Leftrightarrow X=10\).

Giá trị lớn nhất của \(A\)là: \(2021+720\div1=2741\).

12 tháng 3 2016

a,Tổng các chữ số là:1+0+0+..........+0+2=3 chia hết cho 3 nên 102002+2 chia hết cho 3

Vậy \(\frac{10^{2002}+2}{3}\) là số tự nhiên

b,Tổng các chữ số là:1+0+0+............+0+0+8=9 chia hết cho 9 nên 102003+8 chia hết cho 9

Vậy \(\frac{10^{2003}+8}{9}\) là số tự nhiên

12 tháng 3 2016

a) vì\(10^{2002}\)+2 có tổng các chữ số chia hết cho 3 nên 

suy ra phân số \(\frac{10^{2002}+2}{3}\)có giá trị là số tự nhiên 

b) vì 10 mũ 2003 + 8  có tổng các chữ số chia hết cho 9 nên

suy ra 10 mũ 2003 + 8 phần 9  có giá trị là số tự nhiên