Tính nhanh
S= 3/1x4 + 3/4x7 + 3/7x11 + 3/11x14 + 3/14x17Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
=1/1-1/4+1/4-1/7+1/7-1/10+1/10-1/13+1/13-1/16
=1-1/16=15/16
\(A=\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+\frac{3}{11.14}+\frac{3}{14.17}+\frac{3}{17.20}.\)
\(A=\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+\frac{1}{14}-\frac{1}{17}+\frac{1}{17}-\frac{1}{20}\)
\(A=\frac{1}{2}-\frac{1}{20}\)
\(A=\frac{10}{20}-\frac{1}{20}\)
\(A=\frac{9}{20}\)
Mình ra kết quả thứ nhất là 17/60 thứ 2 là 9/20 các bạn thấy cái nào đúng
A = \(\dfrac{1}{2}\) - \(\dfrac{1}{5}\) + \(\dfrac{1}{5}\) - \(\dfrac{1}{8}\) + \(\dfrac{1}{8}\) - \(\dfrac{1}{11}\) + \(\dfrac{1}{11}\) - \(\dfrac{1}{14}\) + \(\dfrac{1}{14}\) - \(\dfrac{1}{17}\) + \(\dfrac{1}{17}\) - \(\dfrac{1}{20}\)
= \(\dfrac{1}{2}\) - \(\dfrac{1}{20}\)
= \(\dfrac{9}{20}\)
3/(1×4)+3/(4×7)+3/(7×10)+3/(10×13)+3/(13×16)
=1-1/4+1/4-1/7+1/7-1/10+1/10-1/13+1/13-1/16
=1-1/16
=15/16
31 x 434 x 737 x 10310 x 13 = 1.3289876e+12
mik phải dùng máy tính chứ có sịp nhân mới trả lời đc
nhỉ ?????
\(E=\dfrac{1}{1\times2}+\dfrac{2}{2\times4}+\dfrac{3}{4\times7}+\dfrac{4}{7\times11}+\dfrac{5}{11\times16}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{16}\)
\(=1-\dfrac{1}{16}=\dfrac{15}{16}\)
#kễnh
Lời giải:
$M=\frac{4-1}{1\times 4}+\frac{7-4}{4\times 7}+\frac{10-7}{7\times 10}+....+\frac{22-19}{19\times 22}+\frac{25-22}{22\times 25}$
$=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+....+\frac{1}{22}-\frac{1}{25}$
$=1-\frac{1}{25}=\frac{24}{25}$
S=3/1.4+3/4.7+3/7.10+.....+3/40.43+3/43.46
S= 1/1-1/4+1/4-1/7+1/7-1/10+...+1/40-1/43+1/43-1/46
S= 1-1/46
=> S<1
S=3.(1/1-1/4+1/4-1/7+.........+1/40-1/43+1/43-1/46)
S=3.(1/1-1/46)
S=3.45/46
S=2/43/46
=> 2/43/46>1
=>S>1
Bạn xem đã viết đúng đề chưa nhỉ. Các thừa số đang cách nhau 3 đơn vị tự nhiên xuất hiện 7 x 11 có 2 thừa số cách nhau 4 đơn vị?
S = \(\dfrac{3}{1.4}\) + \(\dfrac{3}{4.7}\) + \(\dfrac{3}{7.11}\) + \(\dfrac{3}{11.14}\) + \(\dfrac{3}{14.17}\)
S = \(\dfrac{3}{1.4}\) + \(\dfrac{3}{4.7}\) + \(\dfrac{4}{7.11}\) - \(\dfrac{1}{7.11}\) + \(\dfrac{3}{11.14}\) + \(\dfrac{3}{14.17}\)
S = \(\dfrac{3}{1.4}\) + \(\dfrac{3}{4.7}\) + \(\dfrac{4}{7.11}\) + \(\dfrac{3}{11.14}\) + \(\dfrac{3}{14.17}\) - \(\dfrac{1}{7.11}\)
S = \(\dfrac{1}{1}\) - \(\dfrac{1}{4}\) + \(\dfrac{1}{4}\) - \(\dfrac{1}{7}\) + \(\dfrac{1}{7}\) - \(\dfrac{1}{11}\) + \(\dfrac{1}{11}\) - \(\dfrac{1}{14}\) + \(\dfrac{1}{14}\) - \(\dfrac{1}{17}\) - \(\dfrac{1}{77}\)
S = \(\dfrac{1}{1}\) - \(\dfrac{1}{17}\) - \(\dfrac{1}{77}\)
S = \(\dfrac{16}{17}\) - \(\dfrac{1}{77}\)
S = \(\dfrac{1215}{1309}\)