Cho M= 10-3n 5-3n Tìm n Z để M có giá trị là 1 số nguyên
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
mk giải câu a thui nha
để \(\frac{6n-1}{3n+2}\)là số nguyên thì:
(6n-1) sẽ phải chia hết cho(3n+2)
mà (3n+2) chja hết cho (3n+2)
=> 2(3n+2) cx sẽ chia hết cho (3n+2)
<=> (6n+4) chia hết cho (3n+2)
mà (6n-1) chia hết cho (3n+2)
=> [(6n+4)-(6n-1)] chja hết cho (3n+2)
(6n+4-6n+1) chja hết cho 3n+2
5 chia hết cho3n+2
=> 3n+2 \(\in\){1,5,-1,-5}
ta có bảng
3n+2 | 1 | 5 | -1 | -5 |
3n | 3 | 7 | 1 | -3 |
n | 1 | -1 |
vậy....
bạn có thể giải thích ra được không !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
\(\frac{10-3n}{5-3n}\inℤ\Leftrightarrow\frac{10-n}{5-n}\inℤ\)
\(\Rightarrow\frac{5-n}{n}\inℤ\Leftrightarrow n\in\left\{1;-1;5;-5\right\}\)
Ta có:
\(\frac{8-3n}{5-3n}\inℤ\)
\(\Rightarrow\frac{3+5-3n}{5-3n}\inℤ\)
\(\Rightarrow\frac{3}{5-3n}+\frac{5-3n}{5-3n}\inℤ\)
\(\Rightarrow\frac{3}{5-3n}+1\inℤ\Leftrightarrow\frac{3}{5-3n}\inℤ\)
\(\Rightarrow3⋮5-3n\)
\(\Rightarrow5-3n\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
\(\Rightarrow3n\in\left\{\pm6;\pm8\right\}\)
\(\Rightarrow\hept{\begin{cases}n=6:3\\n=8:3\left(\notinℤ\right)\end{cases}}\Leftrightarrow\hept{\begin{cases}n=2\\n=\frac{8}{3}\left(loại\right)\end{cases}}\)
\(\Rightarrow n=2\)
\(\dfrac{5}{3n-1}\in Z\Rightarrow3n-1=Ư\left(5\right)\)
\(\Rightarrow\left[{}\begin{matrix}3n-1=-5\\3n-1=-1\\3n-1=1\\3n-1=5\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}n=-\dfrac{4}{3}\left(ktm\right)\\n=0\\n=\dfrac{2}{3}\left(ktm\right)\\n=2\end{matrix}\right.\)
Vậy \(n=\left\{0;2\right\}\)
M=(6n+4-5):(3n+2)=2-5:(3n+2)
a) để M nguyên thì (3n+2) phải là ước của 5
=> 3n+2={-5; -1; 1; 5}
+/ 3n+2=-5 => n=-7/3 (loại)
+/ 3n+2=-1 => n=-1; M=7
+/ 3n+2=1 => n=-1/3 loại
+/ 3n+2=5 => n=1; M=-3
Đs: n={-1; 1}
b) để M đạt nhỏ nhất thì 5:(3n+2) là lớn nhất, hay 3n+2 đạt giá trị nhỏ nhất => n=0
Mmin=2-5/2=-1/2
a) Để \(\frac{6n-1}{3n+2}=\frac{6n+4-5}{3n+2}=2-\frac{5}{3n+2}\)là số nguyên .
=> \(\frac{5}{3n+2}\)là 1 số nguyên
=> 5 chia hết cho 3n+2 .
=> 3n+2 thuộc Ư(5)=\(\left\{\pm1;\pm5\right\}\)
Từ đó, ta lập bảng ( khúc này bn tự làm)
Vậy...
b) Để \(\frac{5}{3n+2}\)đạt giá trị lớn nhất:
=> 3n+2 đạt giá trị tự nhiên nhỏ nhất
=> 3n đạt giá trị tự nhiên nhỏ nhất
=> n là số tự nhiên nhỏ nhấ
<=> n = 0
\(M=\dfrac{10-3n}{5-3n}=\dfrac{5+5-3n}{5-3n}=\dfrac{5}{5-3n}+1\)
\(M\in Z\Rightarrow\dfrac{5}{5-3n}\in Z\)
\(\Rightarrow5-3n=Ư\left(5\right)=\left\{-5;-1;1;5\right\}\)
\(\Rightarrow\left[{}\begin{matrix}5-3n=-5\Rightarrow n=\dfrac{10}{3}\notin Z\left(loại\right)\\5-3n=-1\Rightarrow n=2\\5-3n=1\Rightarrow n=\dfrac{4}{3}\notin Z\left(loại\right)\\5-3n=5\Rightarrow n=0\end{matrix}\right.\)
Vậy \(n=\left\{0;2\right\}\)