K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
13 tháng 1 2024

Lời giải:
$x^2+y^2=2x^2y^2$

$\Leftrightarrow x^2(1-2y^2)+y^2=0$

$\Leftrightarrow 2x^2(1-2y^2)+2y^2=0$

$\Leftrightarrow 2x^2(1-2y^2)-(1-2y^2)=-1$

$\Leftrightarrow (2x^2-1)(1-2y^2)=-1$
Đến đây ta có 2TH: 

TH1: $2x^2-1=1; 1-2y^2=-1$

$\Rightarrow x^2=1; y^2=1\Rightarrow (x,y)=(\pm 1, \pm 1)$

TH2: $2x^2-1=-1; 1-2y^2=1$

$\Rightarrow x^2=0; y^2=0$

$\Rightarrow (x,y)=(0,0)$

21 tháng 3 2018

x^2y là sao bạn hình như sai ở chỗ đó

21 tháng 3 2018

đó là (x^2)*y nha

NV
25 tháng 3 2021

\(\Leftrightarrow2x^2-x+1=xy+2y\)

\(\Leftrightarrow2x^2-x+1=y\left(x+2\right)\)

\(\Leftrightarrow y=\dfrac{2x^2-x+1}{x+2}=2x-5+\dfrac{11}{x+2}\)

Do y nguyên \(\Rightarrow\dfrac{11}{x+2}\) nguyên \(\Rightarrow x+2=Ư\left(11\right)\)

Mà x nguyên dương \(\Rightarrow x+2\ge3\Rightarrow x+2=11\Rightarrow x=9\)

\(\Rightarrow y=14\)

Vậy \(\left(x;y\right)=\left(9;14\right)\)

6 tháng 2 2021

Ta viết phương trình về dạng: \(2x^2-\left(2y-1\right)x+\left(2y^2+y-10\right)=0\)

Coi đây là phương trình bậc 2 theo ẩn x thì \(\Delta_x=\left(2y-1\right)^2-8\left(2y^2+y-10\right)=-12y^2-12y+81\)

Điều kiện để phương trình có nghiệm là \(\Delta_x\ge0\)hay \(-12y^2-12y+81\ge0\)\(\Leftrightarrow\frac{-1-2\sqrt{7}}{2}\le y\le\frac{-1+2\sqrt{7}}{2}\)mà y nguyên nên \(-3\le y\le2\)

Lập bảng:

\(y\)\(-3\)\(-2\)\(-1\)\(0\)\(1\)\(2\)
\(x\)\(-1\)\(\varnothing\)\(-3\)\(2\)\(\varnothing\)\(0\)

Vậy phương trình có 4 cặp nghiệm nguyên \(\left(x,y\right)=\left\{\left(2,0\right);\left(0,2\right);\left(-1,-3\right);\left(-3;-1\right)\right\}\)

27 tháng 2 2019

Viết pt trên thành pt bậc 2 đối với x:

\(2x^2-x\left(y+1\right)-\left(2y-1\right)=0\) (1)

(1) có nghiệm \(\Leftrightarrow\Delta=\left(y+1\right)^2+8\left(2y-1\right)\ge0\)

\(\Leftrightarrow y^2+18y-7\ge0\Leftrightarrow\orbr{\begin{cases}y\le-9-2\sqrt{22}\\y\ge-9+2\sqrt{22}\end{cases}}\)

Ta cần có \(\Delta\) là số chính phương.Tức là:

\(y^2+18y-7=k^2\Leftrightarrow\left(x+9\right)^2-k^2=88\)

\(\Leftrightarrow\left(x+9-k\right)\left(x+9+k\right)=88\)

Gắt gắt,đợi tí nghĩ cách khác xem sao,cách này thử sao nổi -_-

9 tháng 12 2018

\(3xy+x+15y-44=0\)

\(3y\left(x+5\right)+\left(x+5\right)-49=0\)

\(\left(x+5\right)\left(3y+1\right)=49\)

Vì x;y là số nguyên \(\Rightarrow\hept{\begin{cases}x+5\in Z\\3y+1\in Z\end{cases}}\)

Có \(\left(x+5\right)\left(3y+1\right)=49\)

\(\Rightarrow\left(x+5\right)\left(3y+1\right)\in\text{Ư}\left(49\right)=\left\{\pm1;\pm7;\pm49\right\}\)

b tự lập bảng nhé~

10 tháng 3 2020

\(2x^2+2y^2+3x-6y=5xy-7\)

\(\Leftrightarrow2x^2+2y^2+3x-6y-5xy=-7\)

\(\Leftrightarrow2x^2-4xy+2y^2-xy+3x-6y=-7\)

\(\Leftrightarrow2x\left(x-2y\right)-y\left(x-2y\right)+3\left(x-2y\right)=-7\)

\(\Leftrightarrow\left(2x-y+3\right)\left(x-2y\right)=-7\)

vì x,y nguyên nên \(\hept{\begin{cases}2x-y+3\\x-2y\end{cases}\in Z}\)

Ta có : -7 = ( -7 ) . 1 = (-1 ) . 7

Tới đây bạn tự làm nhé

18 tháng 3 2019

\(2x^2+2y^2-2xy+y-x-10=0\)

\(\Leftrightarrow2x^2-x\left(2y+1\right)+2y^2+y-10=0\)

Coi pt trên là pt bậc 2 ẩn x 

\(\Delta_x=\left(2y+1\right)^2-8\left(2y^2+y-10\right)\)

    \(=4y^2+4y+1-16y^2-8y+80\)

    \(=-12y^2-4y+81\)

Để pt có nghiệm nguyên thì \(\hept{\begin{cases}\Delta_x\ge0\\\Delta_x=k^2\left(k\inℕ^∗\right)\end{cases}}\)

                                     \(\Leftrightarrow\hept{\begin{cases}-12y^2-4y+81\ge0\\-12y^2-4y+81=k^2\end{cases}}\)

Giải nốt đi , đến đây dễ r