Cho tam giác ABC có hai trung tuyến BN, CP và G là trọng tâm. Chứng minh rằng BN + CP > 3/2 BC.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
các trường hợp đồng dạng của tam giác thường :
Trường hợp đồng dạng 1 : 3 cạnh tương ứng tỉ lệ với nhau (c – c – c)
xét ∆ABC và ∆DEF, ta có :
=> ∆ABC ~ ∆DEF (c – c – c)
Trường hợp đồng dạng 2 : 2 cạnh tương ứng tỉ lệ với nhau – góc xen giữa hai cạnh bằng nhau(c – g – c)
xét ∆ABC và ∆DEF, ta có :
=> ∆ABC ~ ∆DEF (c – g – c)
Trường hợp đồng dạng 3 : hai góc tương ứng bằng nhau(g – g)
xét ∆ABC và ∆DEF, ta có :
=> ∆ABC ~ ∆DEF (g – g)
câu 2 :
a) có phải là chứng minh AM ⊥ BC không
xét ΔAMB và ΔAMC, ta có :
AB = AC (2 cạnh bên của ΔABC cân tại A)
MB = MC (AM là đường trung tuyến của cạnh BC)
AM là cạnh chung
=> ΔAMB = ΔAMC (c.c.c)
=> \(\widehat{AMB}=\widehat{AMC}\) (2 cạnh tương ứng)
mà \(\widehat{AMB}+\widehat{AMC}=180^O\) (kề bù)
\(\Rightarrow\widehat{AMB}=\widehat{AMC}=\dfrac{180^O}{2}=90^O\)
=> AM ⊥ BC
A b C B M N P G
Gọi G là trọng tâm tam giác ABC
Vì là trung tuyến \(\Rightarrow\hept{\begin{cases}BN=\frac{3}{2}BG\\CP=\frac{3}{2}CG\end{cases}}\)
\(\Rightarrow BN+CP=\frac{3}{2}\left(BG+CG\right)\)
Mà theo bđt trong tam giác cho tam giác BGC thì \(BG+GC>BC\)
\(\Rightarrow BN+CP>\frac{3}{2}BC\)
A B C N P G
Ta có
\(BG=\dfrac{2}{3}BN\) (t/c đường trung tuyến) \(\Rightarrow BN=\dfrac{3}{2}BG\)
\(CG=\dfrac{2}{3}CP\) (t/c đường trung tuyến) \(\Rightarrow CP=\dfrac{3}{2}CG\)
\(\Rightarrow BN+CP=\dfrac{3}{2}\left(BG+CG\right)\) (1)
Xét tg BCG có
\(BG+CG>BC\) (trong tg tổng 2 cạnh lớn hơn cạnh còn lại)
\(\Rightarrow\dfrac{3}{2}\left(BG+CG\right)>\dfrac{3}{2}BC\) (2)
Từ (1) và (2) \(\Rightarrow BN+CP>\dfrac{3}{2}BC\left(dpcm\right)\)