K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
11 tháng 1 2024

Đặt \(\dfrac{x}{3}=\dfrac{y}{4}=k\Rightarrow\left\{{}\begin{matrix}x=3k\\y=4k\end{matrix}\right.\)

Thay vào \(2x^2+3y^2=30\) ta được:

\(2.\left(3k\right)^2+3.\left(4k\right)^2=30\)

\(\Leftrightarrow66k^2=30\)

\(\Rightarrow k^2=\dfrac{5}{11}\)

\(\Rightarrow k=\pm\dfrac{\sqrt{55}}{11}\)

\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{3\sqrt{55}}{11};y=\dfrac{4\sqrt{55}}{11}\\x=-\dfrac{3\sqrt{55}}{11};y=-\dfrac{4\sqrt{55}}{11}\end{matrix}\right.\)

23 tháng 10 2021

d: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{\dfrac{1}{2}}=\dfrac{y}{\dfrac{1}{3}}=\dfrac{z}{\dfrac{1}{4}}=\dfrac{x+3y-2z}{\dfrac{1}{2}+3\cdot\dfrac{1}{3}-2\cdot\dfrac{1}{4}}=\dfrac{36}{1}=36\)

Do đó: x=18; y=12; z=9

22 tháng 10 2021

d: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{\dfrac{1}{2}}=\dfrac{y}{\dfrac{1}{3}}=\dfrac{z}{\dfrac{1}{4}}=\dfrac{x+3y-2z}{\dfrac{1}{2}+3\cdot\dfrac{1}{3}-2\cdot\dfrac{1}{4}}=\dfrac{36}{1}=36\)

Do đó: x=18; y=12; z=9

22 tháng 10 2021

a) Thay x + 3y - 2z vào biểu thức ta có:

 \(\dfrac{x - 1}{3} = \dfrac{3(y + 2)}{3 . 4} = \dfrac{2(z - 2)}{2 . 3}\) = \(​​​​\dfrac{x - 1}{3} = \dfrac{3x + 6}{12} = \dfrac{2z - 4}{6}\)

Áp dụng tính chất dãy tỉ số bằng nhua ta có:

\(​​​​\dfrac{x - 1}{3} = \dfrac{3y + 6}{12} = \dfrac{2z - 4}{6} = ​​​​\dfrac{x - 1}{3}+ \dfrac{3y + 6}{12} -\dfrac{2z - 4}{6}\) 

=\(​​​​\dfrac{x - 1 + 3y + 6 - 2z + 4}{3 + 12 -6} \) = \(​​​​\dfrac{(x + 3y - 2z) + ( -1 + 6 +4)}{3 + 12 - 6} \)

=\(​​​​\dfrac{36 + 9}{9}\) = 5

=> \(​​​​\dfrac{x - 1}{3} =\) 5 => x - 1 = 5.3 =15 => x = 5+1 = 6

=>

=>

Vậy ...

(Bạn dựa theo cách này và lm những bài tiếp nhé!)

 

 

 

 

 

11 tháng 11 2021

4: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{8}=\dfrac{y}{12}=\dfrac{z}{15}=\dfrac{x-y-z}{8-12-15}=\dfrac{38}{-19}=-2\)

Do đó: x=-16; y=-24; z=-30

22 tháng 10 2021

a. Theo t/c của dãy tỉ số bằng nhau ta có:

x+y+z/2+3+5=40/10=4

=>x=4.2=8

=>y=4.3=12

=>z=4.5=20

 

 

22 tháng 10 2021

b: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}=\dfrac{x-3y+2z}{2-3\cdot3+2\cdot5}=\dfrac{9}{-15}=\dfrac{-3}{5}\)

Do đó: \(\left\{{}\begin{matrix}x=-\dfrac{6}{5}\\y=\dfrac{-9}{5}\\z=-3\end{matrix}\right.\)

\(=\left[\left(\dfrac{-\left(x-y\right)}{x-2y}-\dfrac{x^2+y^2+y-2}{\left(x-2y\right)\left(x+y\right)}\right):\dfrac{\left(2x^2+y\right)^2-4}{x\left(x+y\right)+\left(x+y\right)}\right]:\dfrac{x+1}{2x^2+y+2}\)

\(=\dfrac{-x^2+y^2-x^2-y^2-y+2}{\left(x-2y\right)\left(x+y\right)}\cdot\dfrac{\left(x+y\right)\left(x+1\right)}{\left(2x^2+y-2\right)\left(2x^2+y+2\right)}\cdot\dfrac{2x^2+y+2}{x+1}\)

\(=\dfrac{-2x^2-y+2}{\left(x-2y\right)}\cdot\dfrac{\left(x+1\right)}{\left(2x^2+y-2\right)\left(2x^2+y+2\right)}\cdot\dfrac{2x^2+y+2}{x+1}\)

\(=\dfrac{-1}{x-2y}\)

TD
5 tháng 1 2023

Thay $x=-1,76$ và $y=\dfrac{3}{25}$ vào $P=\dfrac{-1}{x-2y}$, ta được:

$P=\dfrac{-1}{-1,76-2.(\dfrac{3}{25})}=\dfrac{1}{2}$.

2 tháng 8 2017

a ) \(7x=3y\Leftrightarrow\dfrac{x}{3}=\dfrac{y}{7}\)\(x-y=16\)

Theo tính chất của dãy tỉ số bằng nhau, ta có :

\(\dfrac{x}{3}=\dfrac{y}{7}=\dfrac{x-y}{3-7}=\dfrac{16}{-4}=-4\)

\(\Rightarrow\dfrac{x}{3}=-4\Leftrightarrow x=-12\)

\(\Rightarrow\dfrac{x}{7}=-4\Leftrightarrow x=-28\)

Vậy .................

b ) \(\dfrac{x}{2}=\dfrac{y}{5}\)

Đặt \(\dfrac{x}{2}=\dfrac{y}{5}=k\)

\(\Leftrightarrow x=2k;y=5k\)

\(x.y=10\)

\(\Rightarrow2k.5k=10\Leftrightarrow10k^2=10\Leftrightarrow\left[{}\begin{matrix}k=1\\k=-1\end{matrix}\right.\)

2 TH xảy ra :

-Với k = 1 , thì :

\(\left[{}\begin{matrix}x=2.1=2\\y=5.1=5\end{matrix}\right.\)

- Với k=-1, thì :

\(\left[{}\begin{matrix}x=-2\\y=-5\end{matrix}\right.\)

Vậy.............

c ) \(\dfrac{x}{4}=\dfrac{y}{3}\Leftrightarrow\dfrac{2x}{8}=\dfrac{5y}{15}\)\(2x+5y=69\)

Theo tính chất của dãy tỉ số bằng nhau, ta có :

\(\dfrac{2x}{8}=\dfrac{5y}{15}=\dfrac{2x+5y}{8+15}=\dfrac{69}{23}=3\)

\(\Rightarrow\dfrac{2x}{8}=3\Leftrightarrow2x=24\Leftrightarrow x=12\)

\(\Rightarrow\dfrac{5y}{15}=3\Leftrightarrow5y=45\Leftrightarrow y=9\)

d ) \(5x=3y\Leftrightarrow\dfrac{x}{3}=\dfrac{y}{5}\Leftrightarrow\dfrac{4x}{12}=\dfrac{3y}{15}\)\(4x-3y=-99\)

Theo tính chất của dãy tỉ số bằng nhau , ta có :

\(\dfrac{4x}{12}=\dfrac{3y}{15}=\dfrac{4x-3y}{12-15}=\dfrac{-99}{-3}=33\)

\(\Leftrightarrow\dfrac{4x}{12}=33\Leftrightarrow4x=396\Leftrightarrow x=99\)

\(\Rightarrow\dfrac{3y}{15}=33\Leftrightarrow3y=495\Leftrightarrow y=165\)

Vậy .......

2 tháng 8 2017

a. \(7x=3y\Rightarrow\dfrac{x}{3}=\dfrac{y}{7}\)

Áp dụng t/c dãy tỉ số bằng nhau, ta có:

\(\dfrac{x}{3}=\dfrac{y}{7}=\dfrac{x-y}{3-7}=\dfrac{16}{-4}=-4\)

\(\Rightarrow\left\{{}\begin{matrix}x=3.\left(-4\right)=-12\\y=7.\left(-4\right)=-28\end{matrix}\right.\)

10 tháng 11 2021

\(B=\dfrac{\left(x^2-2x\right)\left(20x-11\right)}{\left(x-2012\right)\left(1982x^2+30\right)}-\dfrac{\left(20x-11\right)\left(x^2-3x+2012\right)}{\left(1982x^2+30\right)\left(x-2012\right)}\left(x\ne2012\right)\\ B=\dfrac{\left(20x-11\right)\left(x^2-2x-x^2+3x-2012\right)}{\left(x-2012\right)\left(1982x^2+30\right)} \\ B=\dfrac{\left(20x-11\right)\left(x-2012\right)}{\left(x-2012\right)\left(1982x^2+30\right)}=\dfrac{20x-11}{1982x^2+30}\)

a: \(\left\{{}\begin{matrix}3x-2y=1\\2x+4y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}6x-4y=2\\2x+4y=3\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}8x=5\\3x-2y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{5}{8}\\2y=3x-1=\dfrac{15}{8}-1=\dfrac{7}{8}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{5}{8}\\y=\dfrac{7}{16}\end{matrix}\right.\)

b: \(\left\{{}\begin{matrix}4x-3y=1\\-x+2y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4x-3y=1\\-4x+8y=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=1\\x=-1+2y=-1+2=1\end{matrix}\right.\)

c: \(\left\{{}\begin{matrix}\dfrac{2}{3}x+\dfrac{4}{3}y=1\\\dfrac{1}{2}x-\dfrac{3}{4}y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x+4y=3\\2x-3y=8\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{41}{14}\\y=-\dfrac{5}{7}\end{matrix}\right.\)

6 tháng 8 2018

\(\dfrac{3x-2y}{4}=\dfrac{2z-4x}{3}=\dfrac{4y-3z}{2}\)

\(\Leftrightarrow\dfrac{12x-8y}{16}=\dfrac{6z-12x}{9}=\dfrac{8y-6z}{4}\)

Theo tính chất của dãy tỉ số bằng nhau, có:

\(\dfrac{12x-8y}{16}=\dfrac{6z-12x}{9}=\dfrac{8y-6z}{4}=\dfrac{12x-8x+6z-12x+8y-6z}{16+9+4}=\dfrac{0}{29}=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}12x=8y\\6z=12x\\8y=6z\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x}{8}=\dfrac{y}{12}\\\dfrac{x}{6}=\dfrac{z}{12}\\\dfrac{y}{6}=\dfrac{z}{8}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x}{2}=\dfrac{y}{3}\\\dfrac{x}{2}=\dfrac{z}{4}\\\dfrac{y}{3}=\dfrac{z}{4}\end{matrix}\right.\)

\(\Leftrightarrow\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}\left(đpcm\right)\)

Kết luận ...