Cho nửa đường tròn (O;R) đường kính AB cố định .Qua A và B vẽ các tiếp tuyến Ax và By với nữa đường tròn (O). Từ một điểm M tuỳ ý trên nữa đường tròn (M khác A và B) vẽ tiếp tuyến thứ ba với nữa đường tròn cắt các tiếp tuyến Ax và By lần lượt tại H và K a) Chứng minh tứ giác AHMO nội tiếp b) Chứng minh AH + BK =HK c) Chứng minh HO.MB = 2R² d) Xác định vị trí của điểm M trên nữa đường tròn sao cho tứ giác AHKB có chu vi nhỏ nhất
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: góc CAO+góc CMO=180 độ
=>CAOM nội tiếp
góc DMO+góc DBO=180 độ
=>DMOB nội tiếp
b: Xét (O) có
CM,CA là tiếp tuyến
=>CM=CA và OC là phân giác của góc MOA(1)
Xét (O) có
DM,DB là tiếp tuyến
=>DM=DB và OD là phân giác của góc MOB(2)
Từ (1), (2) suy ra góc DOC=1/2*180=90 độ
Xét ΔDOC vuông tại O có OM là đường cao
nên CM*MD=OM^2
=>AC*BD=R^2
∆ ACB nội tiếp trong đường tròn (O) có AB là đường kính nên ∆ ABC vuông tại C
CO = OA = (1/2)AB (tính chất tam giác vuông)
AC = AO (bán kính đường tròn (A))
Suy ra: AC = AO = OC
∆ ACO đều góc AOC = 60 °
∆ ADB nội tiếp trong đường tròn đường kính AB nên ∆ ADB vuông tại D
DO = OB = OA = (1/2)AB (tính chất tam giác vuông)
BD = BO(bán kính đường tròn (B))
Suy ra: BO = OD = BD
∆ BOD đều
Mà AD, CO là hai đường chéo của hình thoi AODC nên AD vuông góc với OC
Trong đường tròn (O) ta có:
góc ADC = góc ABC (2 góc nội tiếp cùng chắn cung AC
A B C D H E O
a/ Nối A với D ta có
\(\widehat{ADB}=90^o\) (góc nội tiếp chắn nửa đường tròn) \(\Rightarrow AD\perp BC\)
=> H và D cùng nhìn AC dưới 1 góc vuông => AHDC là tứ giác nội tiếp
b/
Xét tg vuông ACO có
\(\widehat{ACO}+\widehat{AOC}=90^o\)
Ta có \(\widehat{ADH}+\widehat{EDB}=\widehat{ADB}=90^o\)
Xét tứ giác nội tiếp AHDC có
\(\widehat{ACO}=\widehat{ADH}\) (Góc nội tiếp cùng chắn cung AH)
\(\Rightarrow\widehat{AOC}=\widehat{EDB}\)
Xét tam giác EOH và tg EBD có
\(\widehat{BED}\) chung
\(\widehat{AOC}=\widehat{EDB}\)
=> tg EOH đồng dạng với tg EDB (g.g.g)
\(\Rightarrow\dfrac{EH}{EB}=\dfrac{EO}{ED}\Rightarrow EH.ED=EO.EB\)
a) Ta có \(\widehat{ADB}=90^0\) (góc nội tiếp chắn nửa đường tròn) \(\Rightarrow\widehat{ADC}=90^0\)
Tứ giác \(AHDC\) có: \(\widehat{ADC}=\widehat{AHC}=90^0\) mà 2 góc này nội tiếp và chắn cung AC
\(\Rightarrow AHDC\) là tứ giác nội tiếp
b) Tứ giác \(AHDC\) nội tiếp \(\Rightarrow\widehat{ACO}=\widehat{ADE}\) (góc nội tiếp cùng chắn 1 cung)
Ta có: \(\widehat{EOH}=90^0-\widehat{ACO}=90^0-\widehat{ADE}=\widehat{EDB}\)
Xét \(\Delta EOH\) và \(\Delta EDB\) có:
\(\widehat{BED}\) chung
\(\widehat{EOH}=\widehat{EDB}\) (đã chứng minh)
\(\Rightarrow\Delta EOH\sim\Delta EDB\) (g.g) \(\Rightarrow\dfrac{EO}{EH}=\dfrac{ED}{EB}\Rightarrow EH.ED=EO.EB\)
a: Xét tứ giác HAOM có
\(\widehat{HAO}+\widehat{HMO}=90^0+90^0=180^0\)
=>HAOM là tứ giác nội tiếp
b: Xét (O) có
HA,HM là các tiếp tuyến
Do đó: HA=HM và OH là phân giác của góc MOA
Xét (O) có
KM,KB là các tiếp tuyến
Do đó: KM=KB và OK là phân giác của góc MOB
Ta có: HM+MK=HK(M nằm giữa H và K)
mà HM=HA và KM=KB
nên HA+KB=HK
c: Ta có: HA=HM
=>H nằm trên đường trung trực của AM(1)
Ta có: OA=OM
=>O nằm trên đường trung trực của AM(2)
Từ (1) và (2) suy ra HO là đường trung trực của AM
=>HO\(\perp\)AM
Xét (O) có
ΔAMB nội tiếp
AB là đường kính
Do đó; ΔAMB vuông tại M
=>AM\(\perp\)MB
Ta có: HO\(\perp\)AM
AM\(\perp\)MB
Do đó: HO//MB
=>\(\widehat{AOH}=\widehat{ABM}\)
Xét ΔAHO vuông tại A và ΔMAB vuông tại M có
\(\widehat{AOH}=\widehat{MBA}\)
Do đó: ΔAHO đồng dạng với ΔMAB
=>\(\dfrac{HO}{AB}=\dfrac{AO}{MB}\)
=>\(HO\cdot MB=AO\cdot AB=2R^2\)