Tìm min \(P=\dfrac{x^2}{y-1}+\dfrac{y^2}{x-1}\)\(\left(x,y>1\right)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Biến đổi:
\(H=\frac{(x^2-1)(y^2-1)}{x^2y^2}=\frac{x^2y^2-(x^2+y^2)+1}{x^2y^2}\)
\(=\frac{x^2y^2-(x+y)^2+2xy+1}{x^2y^2}=\frac{x^2y^2+2xy}{x^2y^2}=1+\frac{2}{xy}\)
Áp dụng BĐT AM-GM:
\(xy\leq \frac{(x+y)^2}{4}=\frac{1}{4}\Rightarrow H=1+\frac{2}{xy}\geq 9\)
Do đó \(H_{\min}=9\Leftrightarrow x=y=\frac{1}{2}\)
Câu hỏi của Thiên Diệp - Toán lớp 8 | Học trực tuyến
Lời giải:
Áp dụng BĐT AM-GM:
$1=x+y\geq 2\sqrt{xy}\Rightarrow xy\leq \frac{1}{4}$
$P=x^2y^2+\frac{1}{x^2y^2}+2-\frac{17}{6}$
$=x^2y^2+\frac{1}{x^2y^2}-\frac{5}{6}$
$=(x^2y^2+\frac{1}{256x^2y^2})+\frac{255}{256x^2y^2}-\frac{5}{6}$
$\geq 2\sqrt{\frac{1}{256}}+\frac{255}{256.\frac{1}{4^2}}-\frac{5}{6}=\frac{731}{48}$
Vậy $P_{\min}=\frac{731}{48}$ khi $x=y=\frac{1}{2}$
Ta có nhận xét sau:
\(\dfrac{x+2}{x^3\left(y+z\right)}=\dfrac{1}{x^2\left(y+z\right)}+\dfrac{2}{x^3\left(y+z\right)}=\dfrac{yz}{zx+xy}+\dfrac{2\left(yz\right)^2}{zx+xy}\)
Tương tự với các phân thức còn lại
Ta đặt:
\(\left\{{}\begin{matrix}a=xy\\b=yz\\c=zx\end{matrix}\right.\)
\(\Rightarrow abc=1\) và \(a,b,c>0\)
Biểu thức P trở thành:
\(P=\Sigma_{cyc}\dfrac{a}{b+c}+2\Sigma_{cyc}\dfrac{a^2}{b+c}\)
Dễ thấy:
\(\Sigma_{cyc}\dfrac{a}{b+c}\ge\dfrac{3}{2}\) (Nesbit)
\(\Sigma_{cyc}\dfrac{a^2}{b+c}\ge\dfrac{a+b+c}{2}\ge\dfrac{3\sqrt[3]{abc}}{2}=\dfrac{3}{2}\)
Do đó:
\(P\ge\dfrac{3}{2}+2.\dfrac{3}{2}=\dfrac{9}{2}\)
Dấu "=" xảy ra khi \(a=b=c=1\)
Lời giải:
Áp dụng BĐT AM-GM:
$\frac{x^2}{y-1}+4(y-1)\geq 2\sqrt{\frac{x^2}{y-1}.4(y-1)}=4x$
$\frac{y^2}{x-1}+4(x-1)\geq 2\sqrt{\frac{y^2}{x-1}.4(x-1)}=4y$
$\Rightarrow P+4(x-1)+4(y-1)\geq 4x+4y$
$\Rightarrow P\geq 8$
Vậy $P_{\min}=8$. Giá trị này đạt tại $x=2(y-1); y=2(x-1)$
$\Rightarrow x=y=2$