\(\left\{{}\begin{matrix}x+y=\dfrac{4x-3}{5}\\x+3y=\dfrac{15-9y}{14}\end{matrix}\right.\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(\left\{{}\begin{matrix}3x+3y=\dfrac{12x-9}{5}=\dfrac{168x-126}{70}\\x+3y=\dfrac{15-9x}{14}=\dfrac{75-45x}{70}\end{matrix}\right.\)
\(\Rightarrow3x+3y-x-3y=\dfrac{168x-126}{70}-\dfrac{75-45x}{70}\)
\(\Rightarrow2x=\dfrac{168x-126-75+45x}{70}\)
\(\Rightarrow2x=\dfrac{213x-201}{70}\)
\(\Rightarrow140x=213x-201\)
\(\Rightarrow213x-140x=201\Rightarrow73x=201\Rightarrow x=\dfrac{201}{73}\)
mà \(x+y=\dfrac{4x-3}{5}\Rightarrow y=\dfrac{4.\dfrac{201}{73}-3}{5}-\dfrac{201}{73}=-\dfrac{84}{73}\)
Vậy...................
Chúc bạn học tốt!!!
a: \(\Leftrightarrow\left\{{}\begin{matrix}8x-4y+12-3x+6y-9=48\\9x-12y+9+16x-8y-36=48\end{matrix}\right.\)
=>5x+2y=48-12+9=45 và 25x-20y=48+36-9=48+27=75
=>x=7; y=5
b: \(\Leftrightarrow\left\{{}\begin{matrix}6x+6y-2x+3y=8\\-5x+5y-3x-2y=5\end{matrix}\right.\)
=>4x+9y=8 và -8x+3y=5
=>x=-1/4; y=1
c: \(\Leftrightarrow\left\{{}\begin{matrix}-4x-2+1,5=3y-6-6x\\11,5-12+4x=2y-5+x\end{matrix}\right.\)
=>-4x-0,5=-6x+3y-6 và 4x-0,5=x+2y-5
=>2x-3y=-5,5 và 3x-2y=-4,5
=>x=-1/2; y=3/2
e: \(\Leftrightarrow\left\{{}\begin{matrix}x\cdot2\sqrt{3}-y\sqrt{5}=2\sqrt{3}\cdot\sqrt{2}-\sqrt{5}\cdot\sqrt{3}\\3x-y=3\sqrt{2}-\sqrt{3}\end{matrix}\right.\)
=>\(x=\sqrt{2};y=\sqrt{3}\)
Cộng vế với vế:
\(x^2+2xy+y^2+x+y=12\)
\(\Leftrightarrow\left(x+y\right)^2+\left(x+y\right)-12=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+y=-4\\x+y=3\end{matrix}\right.\)
TH1: \(\left\{{}\begin{matrix}x+y=-4\\xy=5-\left(x+y\right)=9\end{matrix}\right.\)
Theo Viet đảo, x và y là nghiệm: \(t^2-4t+9=0\) (vô nghiệm)
TH2: \(\left\{{}\begin{matrix}x+y=3\\xy=5-\left(x+y\right)=2\end{matrix}\right.\)
Theo Viet đảo, x và y là nghiệm:
\(t^2-3t+2=0\Rightarrow\left[{}\begin{matrix}t=1\\t=2\end{matrix}\right.\)
\(\Rightarrow\left(x;y\right)=\left(1;2\right);\left(2;1\right)\)
\(a,PT\left(1\right)\Leftrightarrow4x^2+4x+1-y^2=0\\ \Leftrightarrow\left(2x+1\right)^2-y^2=0\\ \Leftrightarrow\left(2x+y+1\right)\left(2x-y+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}2x+y+1=0\\2x-y+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}y=-1-2x\\y=2x+1\end{matrix}\right.\)
Với \(y=-1-2x\Leftrightarrow x^2+x\left(-1-2x\right)+\left(-2x-1\right)^2=1\)
\(\Leftrightarrow x^2-x-2x^2+4x^2+4x+1=1\\ \Leftrightarrow3x^2+3x=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}y=-1\\y=1\end{matrix}\right.\)
Với \(y=2x+1\Leftrightarrow x^2+x\left(2x+1\right)+\left(2x+1\right)^2=1\)
\(\Leftrightarrow x^2+2x^2+x+4x^2+4x+1=1\\ \Leftrightarrow7x^2+5x=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=-\dfrac{5}{7}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}y=-1\\y=\dfrac{3}{7}\end{matrix}\right.\)
Vậy HPT có nghiệm \(\left(x;y\right)=\left\{\left(-1;1\right);\left(0;-1\right);\left(-\dfrac{5}{7};\dfrac{3}{7}\right)\right\}\)
\(a) \begin{cases}x=y+4\\2x+3=0\end{cases}\Leftrightarrow\begin{cases}x = y + 4\\2x = -3\end{cases}\Leftrightarrow\begin{cases}\dfrac{-3}{2} = y + 4\\x = \dfrac{-3}{2}\end{cases}\Leftrightarrow\begin{cases}y = \dfrac{-11}{2}\\x = \dfrac{-3}{2}\end{cases}\\b) \begin{cases}2x + y = 7\\3y - x = 7\end{cases}\Leftrightarrow\begin{cases}2x + y = 7\\6y - 2x = 14\end{cases}\Leftrightarrow\begin{cases}2x + y = 7\\7y = 21\end{cases}\Leftrightarrow\begin{cases}2x + 3 = 7\\y = 3\end{cases}\Leftrightarrow\begin{cases}x=2\\y=3\end{cases}\\ c) \begin{cases} 5x + y = 3 \\ -x - \dfrac{1}{5}y=\dfrac{-3}{5} \end{cases} \Leftrightarrow \begin{cases} 5x + y = 3 \\ 5x + y = 3 \end{cases} (luôn\ đúng) \Leftrightarrow Phương\ trình\ vô\ số\ nghiệm \\d) \begin{cases} 3x - 5y = -18 \\ x - 5 = 2y \end{cases} \Leftrightarrow \begin{cases} 3x - 5y = -18 \\ 3x - 6y = 15 \end{cases} \Leftrightarrow \begin{cases} x - 5 = 2.(-33)\\ y = -13 \end{cases} \Leftrightarrow \begin{cases}x = -61\\y=-33 \end{cases} \)
\(\Leftrightarrow\left\{{}\begin{matrix}5x+3y=4x-3\\14x+42y=15-9y\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+3y=-3\\14x+51y=15\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=-22\\y=\dfrac{19}{3}\end{matrix}\right.\)