CM: \(y=\left(m^2-m-1\right)x-2m^2+2m-3\) luôn đi qua 1 điểm cố định
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a:
Sửa đề: \(I\left(\dfrac{1}{2};-3\right)\)
Thay \(x=\dfrac{1}{2};y=-3\) vào (d): \(y=\left(1-2m\right)x+m-\dfrac{7}{2}\), ta được:
\(\left(1-2m\right)\cdot\dfrac{1}{2}+m-\dfrac{7}{2}=-3\)
=>\(\dfrac{1}{2}-m+m-\dfrac{7}{2}=-3\)
=>\(\dfrac{1}{2}-\dfrac{7}{2}=-3\)
=>-3=-3(đúng)
vậy: I(1/2;-3) là điểm cố định mà (d): \(y=\left(1-2m\right)x+m-\dfrac{7}{2}\) luôn đi qua
b: \(\left(d\right):y=\left(2m+1\right)x+m-2\)
\(=2mx+x+m-2\)
\(=m\left(2x+1\right)+x-2\)
Điểm mà (d) luôn đi qua có tọa độ là:
\(\left\{{}\begin{matrix}2x+1=0\\y=x-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{1}{2}\\y=-\dfrac{1}{2}-2=-\dfrac{5}{2}\end{matrix}\right.\)
Gọi điểm cố định mà đường thẳng :
(d) có phương trình y = (m2 + m) x - 2m2 - 2m đi qua là điểm A ( x0;y0)
Vì điểm A thuộc đường thẳng (d) nên tọa độ điểm A thỏa mãn phương trình đường thẳng d.
Thay tọa độ điểm A vào phương trình đường thẳng (d) ta có :
(m2 + m) x0 - 2m2 - 2m = y0
m2.x0 + mx0 - 2m2 - 2m = y0
(m2x0 - 2m2) + ( mx0 - 2m) = y0
m2(x0 - 2) + m(x0 - 2) = y0
(m2 + m)( x0 - 2) = y0 (1)
Pt(1) luôn đúng với \(\forall\) m \(\Leftrightarrow\) \(\left\{{}\begin{matrix}x_0-2=0\\y_0=0\end{matrix}\right.\)
\(\Leftrightarrow\) \(\left\{{}\begin{matrix}x_0=2\\y_0=0\end{matrix}\right.\)
\(\Rightarrow\) A( 2;0)
Kết luận : Vậy điểm cố định mà đường thẳng y = (m2 +m) x - 2m2 - 2m đi qua là điểm A(2;0)
Gọi \(A\left(x_0;y_0\right)\) là điểm cố định mà đt đi qua với mọi m
\(\Leftrightarrow y_0=\left(m+3\right)x_0-2m-1\\ \Leftrightarrow mx_0+3x_0-2m-1-y_0=0\\ \Leftrightarrow m\left(x_0-2\right)+3x_0-y_0-1=0\\ \Leftrightarrow\left\{{}\begin{matrix}x_0-2=0\\3x_0-y_0-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_0=2\\y_0=5\end{matrix}\right.\Leftrightarrow A\left(2;5\right)\)
Vậy \(A\left(2;5\right)\) là điểm cố định mà đt đi qua với mọi m
a) giả sử đường thẳng trên đi qua điểm cố định A ( x0 ; y0 )
\(\Rightarrow y_0=\left(m-2\right)x_0+3\) với mọi m
\(\Leftrightarrow x_0m-\left(y_0+2x_0-3\right)=0\)với mọi m
\(\Leftrightarrow\hept{\begin{cases}x_0=0\\y_0+2x_0-3=0\end{cases}\Leftrightarrow\hept{\begin{cases}x_0=0\\y_0=3\end{cases}}}\)
Vậy điểm cố định là ( 0 ; 3 )
Sửa đề: \(y=\left(1+m\right)x^2-2\left(m-1\right)x+m-3\)
\(=x^2+mx^2+\left(-2m+2\right)x+m-3\)
\(=x^2+mx^2-2mx+2x+m-3\)
\(=m\left(x^2-2x+1\right)+x^2+2x-3\)
\(=m\left(x-1\right)^2+x^2+2x-3\)
Tọa độ điểm mà (Pm) luôn đi qua là:
\(\left\{{}\begin{matrix}\left(x-1\right)^2=0\\y=x^2+2x-3\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x-1=0\\y=x^2+2x-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=1+2-3=0\end{matrix}\right.\)
(P): \(y=\left(1+m\right)x^2-2\left(m-1\right)x+m-3\)
\(=x^2+mx^2-2mx+2x+m-3\)
\(=m\left(x^2-2x+1\right)+x^2+2x-3\)
\(=m\left(x-1\right)^2+x^2+2x-3\)
Tọa độ điểm cố định mà (Pm) luôn đi qua là:
\(\left\{{}\begin{matrix}\left(x-1\right)^2=0\\y=x^2+2x-3\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x-1=0\\y=x^2+2x-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=1+2-3=0\end{matrix}\right.\)
\(y=\left(m^2-m-1\right)x-2m^2+2m-3\)
\(=m^2x-mx-x-2m^2+2m-3\)
\(=m^2\left(x-2\right)+m\left(2-x\right)-x-3\)
Tọa độ điểm cố định mà (d) luôn đi qua là:
\(\left\{{}\begin{matrix}x-2=0\\2-x=0\\y=-x-3\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=2\\y=-2-3=-5\end{matrix}\right.\)
Gọi điểm cố định mà ĐTHS luôn đi qua có tọa độ \(\left(x_0;y_0\right)\)
\(\Rightarrow y_0=\left(m^2-m-1\right)x_0-2m^2+2m-3\), với mọi m
\(\Rightarrow m^2\left(x_0-2\right)-m\left(x_0-2\right)-\left(x_0+y_0+3\right)=0\), với mọi m
\(\Rightarrow\left\{{}\begin{matrix}x_0-2=0\\x_0-2=0\\x_0+y_0+3=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_0=2\\y_0=-5\end{matrix}\right.\)
Vậy ĐTHS luôn đi qua điểm cố định có tọa độ \(\left(2;-5\right)\)