Giải bất phương trình: \((x-3)^{2x^2-7x}>1\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
hoc gioi the hihiihihihhhihihihihiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
,mnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn
\(\dfrac{-7x+14}{\left(x+5\right)\left(2x-3\right)}>0\) (1)
ĐKXĐ: \(x\ne-5;x\ne\dfrac{3}{2}\)
BPT (1) \(\Leftrightarrow\dfrac{-7\left(x-2\right)}{\left(x+5\right)\left(2x-3\right)}>0\)
\(\Leftrightarrow\dfrac{x-2}{\left(x+5\right)\left(2x-3\right)}< 0\)
*Th1: \(\left\{{}\begin{matrix}x-2>0\\\left(x+5\right)\left(2x-3\right)< 0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x>2\\-5< x< \dfrac{3}{2}\end{matrix}\right.\)
\(\Rightarrow2< x< \dfrac{3}{2}\) (vô lí)
*Th2: \(\left\{{}\begin{matrix}x-2< 0\\\left(x+5\right)\left(2x-3\right)>0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x< 2\\\left[{}\begin{matrix}x>\dfrac{3}{2}\\x< -5\end{matrix}\right.\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}2>x>\dfrac{3}{2}\\x< -5\end{matrix}\right.\)
Vậy:....
\(x-\frac{2x}{2}>\frac{1+7x}{3}+1\)
\(\Leftrightarrow x-x>\frac{4+7x}{3}\)
\(\Leftrightarrow\frac{4+7x}{3}<0\)
\(\Leftrightarrow4+7x<0\)
\(\Leftrightarrow7x<-4\)
\(\Leftrightarrow x<\frac{-4}{7}\)
Vậy bất PT có nghiêm: x<\(\frac{-4}{7}\)
ĐKXĐ: \(x>3\)
Lấy logarit 2 vế: \(\left(2x^2-7x\right).ln\left(x-3\right)>0\)
\(\Leftrightarrow x\left(2x-7\right)ln\left(x-3\right)>0\)
Bảng xét dấu:
\(\Rightarrow\) Nghiệm của BPT là \(\left[{}\begin{matrix}3< x< \dfrac{7}{2}\\x>4\end{matrix}\right.\)