K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
5 tháng 1 2024

Đặt \(n^2-3n=m^2\) với \(m\in N\)

\(\Rightarrow4n^2-12n=4m^2\)

\(\Rightarrow4n^2-12n+9=4m^2+9\)

\(\Rightarrow\left(2n-3\right)^2-\left(2m\right)^2=9\)

\(\Rightarrow\left(2n-3-2m\right)\left(2n-3+2m\right)=9\)

2n-3-2m-9-3-1139
2n-3+2m-1-3-9931
n-10-1434
m20-220-2

Vậy \(n=\left\{0;3;4\right\}\) là các giá trị thỏa mãn

đặt 2n + 34 = a^2

34 = a^2-n^2

34=(a-n)(a+n)

a-n thuộc ước của 34 là { 1; 2; 17; 34} và a-n . Ta có bảng sau ( mik ko bt vẽ)

=>     a-n        1        2 

         a+n        34      17

        Mà tổng và hiệu 2 số nguyên cùng tính chẵn lẻ

      Vậy ....

Ta cóS = 14 +24 +34 +···+1004 không là số chính phương.

=>  S= (1004+14).100:2=50 900 ko là SCP

23 tháng 11 2023

\(\text{Ta có:} \ 3n \ \vdots \ 3 \Rightarrow 3n+2 \ \text{chia 3 dư 2} \\ \text{Mà một số chính phương khi chia 3 chỉ dư 0 hoặc 1} \\ \Rightarrow \text{Không tồn tại số tự nhiên} \ n \ \text{thỏa mãn}\)

27 tháng 5 2022

Do \(2n+1\) và \(3n+1\) là các số chính phương dương nên tồn tại các số nguyên dương a,b sao cho \(2n+1\)\(=a^2\) và \(3n+1=b^2\). Khi đó ta có:

\(2n+9=25.\left(2n+1\right)-16.\left(3n+1\right)=25a^2-16b^2=\left(5a-4b\right).\left(5a+4b\right)\)

Do \(2n+9\) là nguyên tố,\(5a+4b>1\) và \(5a+4b>5a-4b\) nên ta phải có \(5a-4b=1\), tức là: \(b=\dfrac{5a-1}{4}\)

\(\Rightarrow\) ta có: \(\left\{{}\begin{matrix}2n+1=a^2\left(1\right)\\3n+1=\dfrac{\left(5a-1\right)^2}{16}\left(2\right)\end{matrix}\right.\)

Từ (1) : \(2n+1=a^2\Rightarrow n=\dfrac{a^2-1}{2}\) và a > 1 ( do n>0)

Thay vào (2): \(\dfrac{3.\left(a^2-1\right)}{2}+1=\dfrac{\left(5a-1\right)^2}{16}\)  => (a - 1).(a - 9) = 0

=> a = 9. Từ đó ta có n = 40

Vậy duy nhất một giá trị n thỏa mãn yêu cầu đề bài là : n = 40

Đặt 2n+1=k\(^{^{}2}\) , 3n+1=p\(^{^{}2}\)

Từ cách đặt trên chuyển về pt: x\(^{^{}2}\) - 6y\(^{^{}2}\) = 3 (1) với x=3k, y=p
Xét pt Pell (I): x\(^{^{}2}\) - 6y\(^{^{}2}\) = 1. Nghiệm nhỏ nhất: (a,b) = (5,2)
Gọi (x',y') là nghiệm nhỏ nhất của pt (1)
Ta có y'\(^{^{}2}\) \(\le\) max { nb\(^{^{}2}\), \(\frac{-na^2}{d}\) } = max {12, -12,5} = 12 (n=3, d=6)

-> y' \(\le\) 3 (do y' nguyên dương) -> y' \(\in\) {1,2,3}
Thử trực tiếp, dễ thấy (x',y') = (3,1) thoả mãn
-> Pt (1) có dãy nghiệm:
\(x_0\) = 3, \(y_0\) = 1, \(x_{m+1}\) = 5\(x_{m}\) + 12\(y_{m}\) , \(y_{m+1}\) = 2\(x_{m}\) + 5\(y_{m}\)

-> \(k_0\) =1, \(p_0\) =1, \(k_{m+1}\) = 5\(k_{m}\) + 4\(p_{m}\) , \(p_{m+1}\) = 6\(k_{m}\) + 5\(p_{m}\)

Biến đổi, ta chuyển dãy về thành dãy (\(t_{m}\) ) được xác định qua công thức truy hồi sau:

\(t_1\) = 40, \(t_{m+1}\) = 49\(t_{m}\) + 20 + 20\(\sqrt{6t_{m^{}}^2+5t_{m}+1}\) (m nguyên dương)

Khi đó (\(t_{m}\)) vét hết tất cả các giá trị của n để 2n+1 và 3n+1 là số chính phương
=> Với mỗi m bất kì, ta tìm được một giá trị n thoả mãn.