1x3+2x3^2+3x3^3+...+2022x3^2022+2023x3^2023
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1x3 + 2x3 + 3x3 + 4x3 + ....+ 50x3
=(1+2+3+4+...+50)x3
=1275x3
=3825
đúng nha
2023 x 3 + 2023 + 2023 x 6
= 2023 x 3 + 2023 x 1 + 2023 x 6
= 2023 x ( 3 + 1 + 6)
= 2023 x 10
= 20230
x4+2023x2+2022x+2023�4+2023�2+2022�+2023
=x4−x+2023x2+2023x+2023=�4-�+2023�2+2023�+2023
=(x4−x)+(2023x2+2023x+2023)=(�4-�)+(2023�2+2023�+2023)
=x(x3−1)+2023(x2+x+1)=�(�3-1)+2023(�2+�+1)
=x(x−1)(x2+x+1)+2023(x2+x+1)=�(�-1)(�2+�+1)+2023(�2+�+1)
=(x2+x+1)[x(x−1)+2023]=(�2+�+1)[�(�-1)+2023]
=(x2+x+1)(x2−x+2023)
A=1x2+2x3+3x4+...+49x50
3A= 3(1.2+2.3+3.4+...+49.50)
3A= 1.2.3+2.3.3+3.4.3+...+49.50.3
3A= 1.2.(3-0)+2.3(4-1)+3.4(5-2)+...+49.50.(51-48)
3A= 0.1.2-1.2.3+1.2.3-2.3.4+2.3.4-3.4.5+...+48.49.50-49.50.51
3A= 49.50.51
A= 49.50.51/3=41650
B=1x3+3x5+5x7+...+99x101
B=1/1.3 +1/3.5 +...+1/99.101
2B=2/1.3 + 2/3.5 +...+2/99.101
2B=1-1/3+1/3-1/5+...+1/99-1/101
2B=1-1/101
2B=100/101
B=100/101:2=100/202
\(3B=1.3^2+2.3^3+3.3^4+...+2022.3^{2023}+2023.3^{2024}\)
\(2B=3B-B=-3-3^2-3^3-...-3^{2023}+2023.3^{2024}\)
\(2B=2023.3^{2024}-\left(3+3^2+3^3+...+3^{2023}\right)\)
Đặt
\(C=3+3^2+3^3+...+3^{2023}\)
\(3C=3^2+3^3+3^4+...+3^{2024}\)
\(2C=3C-C=3^{2024}-3\Rightarrow C=\dfrac{3^{2024}-3}{2}\)
\(\Rightarrow2B=2023.3^{2024}-\dfrac{3^{2024}-3}{2}=\)
\(=\dfrac{2.2023.3^{2024}-3^{2024}+3}{2}=\dfrac{4045.3^{2024}+3}{2}\)
\(\Rightarrow B=\dfrac{4045.3^{2024}+3}{4}\)