K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 1 2024

\(A=3^{2022}-2^{2022}+3^{2020}-2^{2020}\\=(3^{2022}+3^{2020})-(2^{2022}+2^{2020})\\=3^{2020}\cdot(3^2+1)-2^{2020}\cdot(2^2+1)\\=3^{2020}\cdot10-2^{2019}\cdot2\cdot5\\=3^{2020}\cdot10-2^{2019}\cdot10\)

Ta có: \(\left\{{}\begin{matrix}3^{2020}\cdot10⋮10\\2^{2019}\cdot10⋮10\end{matrix}\right.\)

\(\Rightarrow3^{2020}\cdot10-2^{2019}\cdot10⋮10\)

hay \(A⋮10\) (đpcm)

\(\text{#}Toru\)

`#3107.101107`

\(A = 2 + 2^2 + 2^3 + ... + 2^{2020} + 2^{2021} + 2^{2022}\)

\(= (2 + 2^2) + (2^3 + 2^4) + ... + (2^{2021} + 2^{2022})\)

\(=2(1+2) + 2^3(1 + 2) + ... + 2^{2021}(1 + 2)\)

\(=(1 + 2)(2 + 2^3 + ... + 2^{2021})\)

\(= 3(2 + 2^3 + ... + 2^{2021})\)

Vì \(3(2 + 2^3 + ... + 2^{2021})\) \(\vdots\) \(3\)

`\Rightarrow A \vdots 3`

Vậy, `A \vdots 3.`

9 tháng 10 2016

20212020 tận cùng là 1 ; 20252025 tận cùng là 5

202210 = (20224)2.20222 = (...6)2.(...4) = (...6).(...4) tận cùng là 4 (vì 6.4 = 24 tận cùng là 4)

6 tháng 12 2023

  S= 5+52+53+...+52020+52021

 5S=52+53+54+...+52021+52022

 5S - S=4S=52022-5

  Ta có: 4S+5=52022

             =4S -5 +5 =52022

              => 4S=52022

29 tháng 11 2021

A=(1+3+32)+(33+34+35)+...+(32019+32020+32021)                                                  A=(1+3+32)+33.(1+3+32)+...+32019.(1+3+32)

A=13+33.13+...+32019.13

A=13.(1+33+...+32019)chia hết cho 13

=>A  chia hết cho 13

 

DT
3 tháng 11 2023

A = (5+5^2+5^3)+(5^4+5^5+5^6)+...+(5^2020+5^2021+5^2022)

= 5(1+5+5^2)+5^4(1+5+5^2)+...+5^2020(1+5+5^2)

= 5.31+5^4.31+...+5^2020.31

= 31(5+5^4+...+5^2020) chia hết cho 31

4 tháng 11 2023

\(C=4+4^2+4^3+...+4^{2021}+4^{2022}\)

\(=\left(4+4^2\right)+\left(4^3+4^4\right)+...+\left(4^{2021}+4^{2022}\right)\)

\(=4.\left(1+4\right)+4^3.\left(1+4\right)+...+4^{2021}.\left(1+4\right)\)

\(=4.5+4^3.5+...+4^{2021}.5\)

\(=5.\left(4+4^3+...+4^{2021}\right)⋮5\)

Vậy \(C⋮5\)

26 tháng 9 2019

a, \(S=3^0+3^2+3^4+3^6+...+3^{2020}\)

\(\Leftrightarrow3^2S=3^2+3^4+3^6+3^8+...+3^{2022}\)

\(\Leftrightarrow3^2S-S=3^{2022}-3^0\)

\(\Leftrightarrow9S-S=3^{2022}-1\)

\(\Leftrightarrow8S=3^{2022}-1\Leftrightarrow S=\frac{3^{2022}-1}{8}\)

b,\(S=3^0+3^2+3^4+3^6+...+3^{2020}\)

\(=\left(3^0+3^2+3^4\right)+\left(3^6+3^8+3^{10}\right)+...+\left(3^{2016}+3^{2018}+3^{2020}\right)\)

\(=\left(1+3^2+3^4\right)+3^6\left(1+3^2+3^4\right)+...+3^{2016}\left(1+3^2+3^4\right)\)

\(=\left(1+3^2+3^4\right)\left(1+3^6+...+3^{2016}\right)\)

\(=91\left(1+3^6+...+3^{2016}\right)=13.7\left(1+3^6+...+3^{2016}\right)⋮7\)

=> đpcm

26 tháng 9 2019

Tham khảo :

a, S=30+32+34+36+...+32020S=30+32+34+36+...+32020

32S=32+34+36+38+...+32022⇔32S=32+34+36+38+...+32022

32SS=3202230⇔32S−S=32022−30

9SS=320221⇔9S−S=32022−1

8S=320221S=3202218⇔8S=32022−1⇔S=32022−18

b,S=30+32+34+36+...+32020S=30+32+34+36+...+32020

=(30+32+34)+(36+38+310)+...+(32016+32018+32020)=(30+32+34)+(36+38+310)+...+(32016+32018+32020)

=(1+32+34)+36(1+32+34)+...+32016(1+32+34)=(1+32+34)+36(1+32+34)+...+32016(1+32+34)

=(1+32+34)(1+36+...+32016)=(1+32+34)(1+36+...+32016)

=91(1+36+...+32016)=13.7(1+36+...+32016)7=91(1+36+...+32016)=13.7(1+36+...+32016)⋮7 (

=> (đpcm)

=>99

A<1/1*2+1/2*3+...+1/2021*2022

=>A<1-1/2+1/2-1/3+...+1/2021-1/2022<1