Chứng minh rằng N là STN thì
\(9^{2n}-1⋮2,5\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a) Vì 10n luôn luôn có cs tận cùng là 0 (luôn luôn 10;100;1000;... đều trừ 1 thì đều chia hết cho 9)
suy ra 10n-1 chia hết cho 9
b) Vì 10n luôn luôn có cs tận cùng là 0
ta có 10n sẽ có tổng các cs của nó là 1
Vậy 10n+8 sẽ có tổng các cs là 9
Mà 9 chia hết cho 9 nên 10n+8 sẽ chia hết cho 9.
Vì 111...11(n số 1) có tổng các chữ số là n
=>111...11(n số 1) đồng dư với n (mod 3)
=>2n+111...11(n số 1) đồng dư với 2n +n=3n(mod 3)
Vì 3n chia hết cho 3
=>2n +111..11(n số 1) đồng dư với 0(mod 3)
=>2n+111...11(n số 1) chia hết cho 3(với n là STN)
Vậy với mọi n là STN thì 2n+111...11(n số 1) chia hết cho 3
Xsfgvhtewwerrrrrddhhfffgfffgfgffhjjjnvcxsaseertuikmjuuyyyyttttccccdgjnjhewqpl., cxse yygbdwvi hhnni
Ta có:11n+2+122n+1
=11n.112+(122)n.12
=11n.121+144n.12
=11n.(133-12)+144n.12
=11n.133-11n.12+144n.12
=11n.133+144n.12-11n.12
=11n.133+12.(144n-11n)
Ta có hằng đẳng thức:an-bn=(a-b)(an-1+an-2b+.....+abn-2+bn-1) luôn chia hết cho (a-b)
=>144n-11n chia hết cho (144-11)=133
=>12.(144n-11n) chia hết cho 133
Mà 11n.133 chia hết cho 133
=>11n.133+12.(144n-11n) chia hết cho 133
=> đpcm
92n=(92)n=81n
=> 92n luôn tận cùng là 1 => 92n-1 tận cùng là 0 => nó sẽ chia hết cho 2 và 5
92n=(92)n=81n
=> 92n luôn tận cùng là 1 => 92n-1 tận cùng là 0 => nó sẽ chia hết cho 2 và 5
~~~~~~~~~~~ Chúc bạn hok tốt ~~~~~~~~~~~~~