K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 8 2021

mình làm mẫu thôi, bên dưới tương tự bạn nhé

a, \(\frac{\sqrt{x}+6}{\sqrt{x}-3}=\frac{\sqrt{x}-3+9}{\sqrt{x}-3}=1+\frac{9}{\sqrt{x}-3}\)ĐK : \(x\ge0;x\ne9\)

\(\Rightarrow\sqrt{x}-3\inƯ\left(9\right)=\left\{\pm1;\pm3;\pm9\right\}\)

\(\sqrt{x}-3\)1-13-39-9
x164360144loại
28 tháng 9 2017

a) \(\dfrac{x+5}{5}+\dfrac{x+5}{7}+\dfrac{x+5}{9}=\dfrac{x+5}{11}+\dfrac{x+5}{13}\)

\(\Rightarrow\left(x+5\right)\left(\dfrac{1}{5}+\dfrac{1}{7}+\dfrac{1}{9}\right)=\left(x+5\right)\left(\dfrac{1}{11}+\dfrac{1}{13}\right)\)

\(\Rightarrow\dfrac{143}{315}\left(x+5\right)=\dfrac{24}{143}\left(x+5\right)\)

\(\Rightarrow\dfrac{143}{315}\left(x+5\right)-\dfrac{24}{143}\left(x+5\right)=0\)

\(\Rightarrow\left(x+5\right)\left(\dfrac{143}{315}-\dfrac{24}{143}\right)=0\)

\(\Rightarrow x+5=0\Rightarrow x=-5\)

b) \(\dfrac{x+2}{100}+\dfrac{x+3}{99}+\dfrac{x+4}{98}=\dfrac{x+5}{97}+\dfrac{x+6}{96}+\dfrac{x+7}{95}\)

\(\Rightarrow\)\(3+\dfrac{x+2}{100}+\dfrac{x+3}{99}+\dfrac{x+4}{98}=3+\dfrac{x+5}{97}+\dfrac{x+6}{96}+\dfrac{x+7}{95}\)

\(\Rightarrow\)\(1+\dfrac{x+2}{100}+1+\dfrac{x+3}{99}+1+\dfrac{x+4}{98}=1+\dfrac{x+5}{97}+1+\dfrac{x+6}{96}+1+\dfrac{x+7}{95}\)

\(\Rightarrow\)\(\dfrac{100}{100}+\dfrac{x+2}{100}+\dfrac{99}{99}+\dfrac{x+3}{99}+\dfrac{98}{98}+\dfrac{x+4}{98}=\dfrac{97}{97}+\dfrac{x+5}{97}+\dfrac{96}{96}+\dfrac{x+6}{96}+\dfrac{95}{95}+\dfrac{x+7}{95}\)\(\Rightarrow\)\(\dfrac{x+102}{100}+\dfrac{x+102}{99}+\dfrac{x+102}{98}=\dfrac{x+102}{97}+\dfrac{x+102}{96}+\dfrac{x+102}{95}\)

\(\Rightarrow\)\(\left(x+102\right)\left(\dfrac{1}{100}+\dfrac{1}{99}+\dfrac{1}{98}\right)=\left(x+102\right)\left(\dfrac{1}{97}+\dfrac{1}{96}+\dfrac{1}{95}\right)\)

\(\Rightarrow\)\(x+102=0\)

\(\Rightarrow x=-102\)

28 tháng 9 2017

c) \(\left(x+2\right)-\left(x+3\right)>0\)

\(\Rightarrow x+2-x-3>0\Rightarrow-1>0\)

\(\Rightarrow x\in\varnothing\)

d) \(\left(x-5\right)\left(x+\dfrac{7}{3}\right)\ge0\)

TH1: \(\left\{{}\begin{matrix}x-5\ge0\\x+\dfrac{7}{3}\ge0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x\ge5\\x\ge\dfrac{-7}{3}\end{matrix}\right.\)

\(\Rightarrow x\ge\dfrac{-7}{3}\)

TH2: \(\left\{{}\begin{matrix}x-5\le0\\x+\dfrac{7}{3}\le0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x\le5\\x\le\dfrac{-7}{3}\end{matrix}\right.\)

\(\Rightarrow x\le5\)

TH3: \(\left[{}\begin{matrix}x-5=0\\x+\dfrac{7}{3}=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=5\\x=\dfrac{-7}{3}\end{matrix}\right.\)

28 tháng 9 2017

a) Ta có : \(\frac{x+5}{5}+\frac{x+5}{7}+\frac{x+5}{9}=\frac{x+5}{11}+\frac{x+5}{13}\)

\(\Rightarrow\frac{x+5}{5}+\frac{x+5}{7}+\frac{x+5}{9}-\left(\frac{x+5}{11}+\frac{x+5}{13}\right)=0\)

\(\Rightarrow\frac{x+5}{5}+\frac{x+5}{7}+\frac{x+5}{9}-\frac{x+5}{11}-\frac{x+5}{13}=0\)

\(\Rightarrow\left(x+5\right)\left(\frac{1}{5}+\frac{1}{7}+\frac{1}{9}-\frac{1}{11}-\frac{1}{13}\right)=0\)

Do \(\frac{1}{5}+\frac{1}{7}+\frac{1}{9}-\frac{1}{11}-\frac{1}{13}\ne0\)

\(\Rightarrow x+5=0\Rightarrow x=-5\)

Vậy x = -5

b) Ta có : \(\frac{x+2}{100}+\frac{x+3}{99}+\frac{x+4}{98}=\frac{x+5}{97}+\frac{x+6}{96}+\frac{x+7}{95}\)

\(\Rightarrow\frac{x+2}{100}+\frac{x+3}{99}+\frac{x+4}{98}+3=\frac{x+5}{97}+\frac{x+6}{96}+\frac{x+7}{95}+3\)

\(\Rightarrow\frac{x+2}{100}+1+\frac{x+3}{99}+1+\frac{x+4}{98}+1=\frac{x+5}{97}+1+\frac{x+6}{96}+1+\frac{x+7}{95}+1\)

\(\Rightarrow\frac{x+102}{100}+\frac{x+102}{99}+\frac{x+102}{98}=\frac{x+102}{97}+\frac{x+102}{96}+\frac{x+102}{95}\)

\(\Rightarrow\frac{x+102}{100}+\frac{x+102}{99}+\frac{x+102}{98}-\left(\frac{x+102}{97}+\frac{x+102}{96}+\frac{x+102}{95}\right)=0\)

\(\Rightarrow\frac{x+102}{100}+\frac{x+102}{99}+\frac{x+102}{98}-\frac{x+102}{97}-\frac{x+102}{96}-\frac{x+102}{95}\)

\(\Rightarrow\left(x+102\right)\left(\frac{1}{100}+\frac{1}{99}+\frac{1}{98}-\frac{1}{97}-\frac{1}{96}-\frac{1}{95}\right)=0\)

Do \(\frac{1}{100}+\frac{1}{99}+\frac{1}{98}-\frac{1}{97}-\frac{1}{96}-\frac{1}{95}\ne0\)

\(\Rightarrow x+102=0\Rightarrow x=-102\)

Vậy x = -102

c) Ta có : (x + 2) - (x + 3) = x + 2 - x - 3

                                      = x - x + 2 - 3

                                      = -1

mà (x + 2) - (x + 3) > 0 => không tồn tại x sao cho (x + 2) - (x + 3) > 0

d) Ta có : \(\left(x-5\right)\left(x+\frac{7}{3}\right)\ge0\)

\(\Rightarrow\orbr{\begin{cases}x\ge5\\x\ge\frac{-7}{3}\end{cases}}\)

\(\Rightarrow x\ge\frac{-7}{3}\)

Vậy \(x\ge\frac{-7}{3}\)

5 tháng 9 2020

a) \(2\sqrt{3x}-4\sqrt{3x}+27-2\sqrt{3x}=27-4\sqrt{3x}\)

b) \(3\sqrt{2x}-5\sqrt{8x}+7\sqrt{8x}+28=3\sqrt{2x}+2\sqrt{8x}+28=3\sqrt{2x}+4\sqrt{2x}+28=7\sqrt{2x}+28\)

c) \(\frac{2}{x^2-y^2}\sqrt{\frac{3\left(x+y\right)^2}{2}}=\frac{2}{\left(x-y\right)\left(x+y\right)}.\frac{\sqrt{3}\left|x+y\right|}{\sqrt{2}}=\frac{\sqrt{6}}{x-y}\)

d) \(\frac{2}{2a-1}\sqrt{5a^2\left(1-4x+4a^2\right)}=\frac{2}{2a-1}\sqrt{5a^2\left(2a-1\right)^2}=\frac{2}{2a-1}.\sqrt{5}\left|a\left(2a-1\right)\right|=2a\sqrt{5}\)

Thiếu ĐKXĐ : ..............

5 tháng 9 2020

a) Ta có: \(2\sqrt{3x}-4\sqrt{3x}+27-2\sqrt{3x}\)

        \(=27-4\sqrt{3x}\)

b) Ta có: \(3\sqrt{2x}-5\sqrt{8x}+7\sqrt{8x}+28\)

        \(=3\sqrt{2x}-5.2\sqrt{2x}+7.2\sqrt{2x}+28\)

        \(=3\sqrt{2x}-10\sqrt{2x}+14\sqrt{2x}+28\)

        \(=7\sqrt{2x}+28\)

c) Ta có: \(\frac{2}{x^2-y^2}.\sqrt{\frac{3\left(x+y\right)^2}{2}}\)

        \(=\sqrt{\frac{4}{\left(x-y\right)^2.\left(x+y\right)^2}.\frac{3\left(x+y\right)^2}{2}}\)

        \(=\sqrt{\frac{2.3}{\left(x-y\right)^2}}\)

        \(=\frac{1}{x-y}.\sqrt{6}\)

d) Ta có: \(\frac{2}{2a-1}.\sqrt{5a^2.\left(1-4a+4a^2\right)}\)

        \(=\sqrt{\frac{4}{\left(2a-1\right)^2}.5a^2.\left(2a-1\right)^2}\)

        \(=2a.\sqrt{5}\)