K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
26 tháng 12 2023

Lời giải:

$x^3+y^3+3xy(x+y)=x^3+3x^2y+3xy^2+y^3=(x+y)^3$

P.s: Lần sau bạn chú ý ghi đầy đủ yêu cầu đề nhé.

6 tháng 11 2021

\(1,=x\left(x^2-2x+1-y^2\right)=x\left[\left(x-1\right)^2-y^2\right]=x\left(x-y-1\right)\left(x+y-1\right)\\ 2,=\left(x+y\right)^3\\ 3,=\left(2y-z\right)\left(4x+7y\right)\\ 4,=\left(x+2\right)^2\\ 5,Sửa:x\left(x-2\right)-x+2=0\\ \Leftrightarrow\left(x-2\right)\left(x-1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)

11 tháng 12 2021

3x2 - x - 3xy + y

= 3x(x-y) - (x-y)

= (3x-1)(x-y)

17 tháng 12 2023

\(x^3+y^3-3x^2+3x-1\\=(x^3-3x^2+3x-1)+y^3\\=(x-1)^3+y^3\\=(x-1+y)[(x-1)^2-(x-1)y+y^2]\\=(x+y-1)(x^2-2x+1-xy+y+y^2)\)

17 tháng 12 2023

Còn 1 câu bên dưới nữa b

7 tháng 10 2020

x3 - x + 3x2y + 3xy2 + y3 - y ( sửa -x3 -> x3 )

= ( x3 + 3x2y + 3xy2 + y3 ) - ( x + y )

= ( x + y )3 - ( x + y )

= ( x + y )[ ( x + y )2 - 1 ]

= ( x + y )( x + y - 1 )( x + y + 1 )

a: =x^2(x^2+2x+1)

=x^2(x+1)^2

b: =x^3+3x^2y+3xy^2+y^3-x-y

=(x+y)^3-(x+y)

=(x+y)[(x+y)^2-1]

=(x+y)(x+y-1)(x+y+1)

c: =5(x^2-2xy+y^2-4z^2)

=5(x-y-2z)(x-y+2z)

19 tháng 11 2021

\(=\left(x+y\right)^3-\left(x+y\right)=\left(x+y\right)\left[\left(x+y\right)^2-1\right]\\ =\left(x+y\right)\left(x+y+1\right)\left(x+y-1\right)\)

19 tháng 11 2021

dạ em cảm ơn ạ ^^

16 tháng 8 2023

x³ - 3x²y + 3xy² - y³ - z³

= (x³ - 3x²y + 3xy² - y³) - z³

= (x - y)³ - z³

= (x - y - z)[(x - y)² + (x - y)z + z²]

= (x - y - z)(x² - 2xy + y² + xz - yz + z³)

--------------------

x² - y² + 8x + 6y + 7

= (x² + 8x + 16) - (y² - 6y + 9)

= (x + 4)² - (y - 3)²

= (x + 4 - y + 3)(x + 4 + y - 3)

= (x - y + 7)(x + y + 1)

a: \(=\left(x^3-3x^2y+3xy^2-y^3\right)-z^3\)

\(=\left(x-y\right)^3-z^3\)

\(=\left(x-y-z\right)\left[\left(x-y\right)^2+z\left(x-y\right)+z^2\right]\)

\(=\left(x-y-z\right)\left(x^2-2xy+y^2+xz-yz+z^2\right)\)

b: \(=x^2+8x+16-y^2+6y-9\)

=(x+4)^2-(y-3)^2

=(x+4+y-3)(x+4-y+3)

=(x+y+1)(x-y+7)

17 tháng 10 2023

\(x^3+3xy+y^3-1\)

\(=x^3+3xy\left(x+y\right)+y^3-3xy\left(x+y\right)+3xy-1\)

\(=\left(x+y\right)^3-1-3xy\left(x+y-1\right)\)

\(=\left(x+y-1\right)\left[\left(x+y\right)^2+\left(x+y\right)+1\right]-3xy\left(x+y-1\right)\)

\(=\left(x+y-1\right)\left(x^2+y^2-xy+x+y+1\right)\)

17 tháng 10 2023

\(x^3+3xy+y^3-1\)

\(=\left(x+y\right)^3-3xy\left(x+y\right)+3xy-1\)

\(=\left(x+y-1\right)\left[\left(x+y\right)^2+\left(x+y\right)+1\right]-3xy\left(x+y-1\right)\)

\(=\left(x+y-1\right)\left[x^2+2xy+y^2+x+y-3xy+1\right]\)

\(=\left(x+y-1\right)\left(x^2+y^2+x+y-xy+1\right)\)