K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 12 2018

\(\left(2x^2-3xy\right).\left(4x^2+x\right)\)

\(=8x^4+2x^3-12x^3y-3x^2y\)

26 tháng 10 2021

a: \(=x^2\left(2x+3\right)+\left(2x+3\right)\)

\(=\left(2x+3\right)\left(x^2+1\right)\)

b: \(=\left(x-4\right)\left(x+3\right)\)

e: =(x+3)(x-2)

26 tháng 10 2021

a) \(=x^2\left(2x+3\right)+\left(2x+3\right)=\left(2x+3\right)\left(x^2+1\right)\)

b) \(=x\left(x-4\right)+3\left(x-4\right)=\left(x-4\right)\left(x+3\right)\)

c) \(=\left(2x\right)^2-\left(x^2+1\right)^2=\left(x^2-2x+1\right)\left(x^2+2x+1\right)=\left(x-1\right)^2\left(x+1\right)^2\)

d) \(=4xy\left(y-3x+2\right)\)

e) \(=x\left(x-2\right)+3\left(x-2\right)=\left(x-2\right)\left(x+3\right)\)

f) \(=x\left(x^2+2xy+y^2-4z^2\right)=x\left[\left(x+y\right)^2-4z^2\right]=x\left(x+y-2z\right)\left(x+y+2z\right)\)

g) \(=x\left(x^2-2xy+y^2-25\right)=x\left[\left(x-y\right)^2-25\right]=x\left(x-y-5\right)\left(x-y+5\right)\)

h) \(=x\left(x+1\right)-3\left(x+1\right)=\left(x+1\right)\left(x-3\right)\)

i) \(=x^2\left(x-3\right)-9\left(x-3\right)=\left(x-3\right)\left(x^2-9\right)=\left(x-3\right)^2\left(x+3\right)\)

a: Ta có: \(x^2-4y^2-2x-4y\)

\(=\left(x-2y\right)\left(x+2y\right)-2\left(x+2y\right)\)

\(=\left(x+2y\right)\left(x-2y-2\right)\)

c: Ta có: \(x^3+2x^2y-x-2y\)

\(=x^2\left(x+2y\right)-\left(x+2y\right)\)

\(=\left(x+2y\right)\left(x-1\right)\left(x+1\right)\)

d: Ta có: \(3x^2-3y^2-2\cdot\left(x-y\right)^2\)

\(=3\left(x-y\right)\left(x+y\right)-2\cdot\left(x-y\right)^2\)

\(=\left(x-y\right)\left(3x+3y-2x+2y\right)\)

\(=\left(x-y\right)\left(x+5y\right)\)

e: Ta có: \(x^3-4x^2-9x+36\)

\(=x^2\left(x-4\right)-9\left(x-4\right)\)

\(=\left(x-4\right)\left(x-3\right)\left(x+3\right)\)

f: Ta có: \(x^2-y^2-2x-2y\)

\(=\left(x-y\right)\left(x+y\right)-2\left(x+y\right)\)

\(=\left(x+y\right)\left(x-y-2\right)\)

2 tháng 3 2022

A = \(4x^2-3x+7x^2+2x-5\)

\(11x^2-3x+2x-5\)

\(11x^2-x-5\)

B = \(3x+7y-6x-8+y-2\)

\(3x+7y-6x-10+y\)

\(- 3x+7y-10+y\)

\(3x+8y-10\)

C =  chịu

D= \(6x^4-3x^2+x^2-4x+3.4-x+2\)

\(6x^4-3x^2+x^2-4x;12-x+2\\ \)

\(6x^4-3x^2+x^2-4x+14-x\)

\(6x^4-2x^2-4x+14-x\)

\(6x^4-2x^2-5x+14\)

a: \(=\left(2x+y\right)^2-3^2=\left(2x+y+3\right)\left(2x+y-3\right)\)

b: =3x(x-y)-(x-y)=(x-y)(3x-1)

27 tháng 8 2023

a) \(\left(x+2y\right)^2-\left(x-y\right)^2=\left(x+2y+x-y\right)\left(x+2y-x+y\right)\)

\(=\left(2x+y\right).3y\)

b) \(\left(x+1\right)^3+\left(x-1\right)^3\)

\(=\left(x+1+x-1\right)\left[\left(x+1\right)^2-\left(x+1\right)\left(x-1\right)+\left(x-1\right)^2\right]\)

\(=2x\left[\left(x+1\right)^2-\left(x^2-1\right)+\left(x-1\right)^2\right]\)

c) \(9x^2-3x+2y-4y^2\)

\(=9x^2-4y^2-3x+2y\)

\(=\left(3x-2y\right)\left(3x+2y\right)-\left(3x-2y\right)\)

\(=\left(3x-2y\right)\left[3x+2y-1\right]\)

d) \(4x^2-4xy+2x-y+y^2\)

\(=4x^2-4xy+y^2+2x-y\)

\(=\left(2x-y\right)^2+2x-y\)

\(=\left(2x-y\right)\left(2x-y+1\right)\)

e) \(x^3+3x^2+3x+1-y^3\)

\(=\left(x+1\right)^3-y^3\)

\(=\left(x+1-y\right)\left[\left(x+1\right)^2+y\left(x+1\right)+y^2\right]\)

g) \(x^3-2x^2y+xy^2-4x\)

\(=x\left(x^2-2xy+y^2\right)-4x\)

\(=x\left(x-y\right)^2-4x\)

\(=x\left[\left(x-y\right)^2-4\right]\)

\(=x\left(x-y+2\right)\left(x-y-2\right)\)

27 tháng 8 2023

a) (x + 2y)² - (x - y)²

= (x + 2y - x + y)(x + 2y + x - y)

= 3y(2x + y)

b) (x + 1)³ + (x - 1)³

= (x + 1 + x - 1)[(x + 1)² - (x + 1)(x - 1) + (x - 1)²]

= 2x(x² + 2x + 1 - x² + 1 + x² - 2x + 1)

= 2x(x² + 3)

c) 9x² - 3x + 2y - 4y²

= (9x² - 4y²) - (3x - 2y)

= (3x - 2y)(3x + 2y) - (3x - 2y)

= (3x - 2y)(3x + 2y - 1)

d) 4x² - 4xy + 2x - y + y²

= (4x² - 4xy + y²) + (2x - y)

= (2x - y)² + (2x - y)

= (2x - y)(2x - y + 1)

e) x³ + 3x² + 3x + 1 - y³

= (x³ + 3x² + 3x + 1) - y³

= (x + 1)³ - y³

= (x + 1 - y)[(x + 1)² + (x + 1)y + y²]

= (x - y + 1)(x² + 2x + 1 + xy + y + y²)

g) x³ - 2x²y + xy² - 4x

= x(x² - 2xy + y² - 4)

= x[(x² - 2xy + y²) - 4]

= x[(x - y)² - 2²]

= x(x - y - 2)(x - y + 2)

22 tháng 11 2021

\(1,\\ 12x^6y^3:4x^3y=3x^3y^2\\ \left(x+1\right)\left(x^2-x+1\right)=x^3+1\\ 2x^2y\left(x^2+3xy\right)=3x^4y+6x^3y^2\\ 2,\\ a,=2xy\left(2x+3y-4\right)\\ b,=\left(x-3\right)\left(x+y\right)\\ c,=\left(x-2\right)\left(x+2\right)+y\left(x-2\right)=\left(x+y+2\right)\left(x-2\right)\\ d,=x^2-2x-5x+10=\left(x-2\right)\left(x-5\right)\\ 3,\\ a,\Leftrightarrow x^2-x^2+2x=2\\ \Leftrightarrow2x=2\Leftrightarrow x=1\\ b,\Leftrightarrow\left(x-2\right)\left(x-2+1\right)=0\\ \Leftrightarrow\left(x-2\right)\left(x-1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)

AH
Akai Haruma
Giáo viên
14 tháng 11 2023

Bạn nên viết đề cho rõ ràng để mọi người hiểu đề và hỗ trợ bạn tốt hơn. Viết đề díu dít vào nhau và không gõ công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) khiến bài của bạn có khả năng bị bỏ qua cao hơn nhé.

1b.=2((x+y)+(x+y)(x-y)+(x-y))=2(x2-y2+x+y+x-y)=2(x2-y2+2x)=2x2-2y2+4x

2a.=4xy+4xy+2y=8xy+2y=2y(4x+1)

b.=(3x)2+2.3x.y+y2-(2z)2=(3x+y)2-(2z)2=(3x+y-2z)(3x+y+2z)

c.=x2-x-7x+7=x(x-1)-7(x-1)=(x-1)(x-7)

30 tháng 9 2018

\(\left(x+y\right)^2+2\left(x+y\right)\left(x-y\right)+\left(x-y\right)^2\)

\(=\left(x+y+x-y\right)^2\)

\(=\left(2x\right)^2\)

\(=4x^2\)

hk tốt

^^

26 tháng 10 2021

a: \(=\left(3-x\right)\left(x+1\right)\)

b: \(=3x\left(x-y\right)-5\left(x-y\right)\)

=(x-y)(3x-5)

c: \(=x\left(x-y\right)-10\left(x-y\right)\)

\(=\left(x-y\right)\left(x-10\right)\)

26 tháng 10 2021

a) \(=x\left(3-x\right)+\left(3-x\right)=\left(3-x\right)\left(x+3\right)\)

b) \(=3x\left(x-y\right)-5\left(x-y\right)=\left(x-y\right)\left(3x-5\right)\)

c) \(=x\left(x-y\right)-10\left(x-y\right)=\left(x-y\right)\left(x-10\right)\)

d) \(=\left(x+y\right)^2-16=\left(x+y-4\right)\left(x+y+4\right)\)

e) \(=\left(x-y\right)\left(x+y\right)-4\left(x+y\right)=\left(x+y\right)\left(x-y-4\right)\)

f) \(=9-\left(4x^2-4xy+y^2\right)=9-\left(2x-y\right)^2=\left(3-2x+y\right)\left(3+2x-y\right)\)

g) \(=y\left(y^2-2xy+x^2-y\right)\)

h) \(=x^2\left(x-3\right)-4\left(x-3\right)=\left(x-3\right)\left(x^2-4\right)=\left(x-3\right)\left(x-2\right)\left(x+2\right)\)

i) \(=x\left(x-y\right)+\left(x-y\right)\left(x+y\right)=\left(x-y\right)\left(2x+y\right)\)