Giúp mình với ạ có mik dag gấp
Chứng minh rằng : 1/5^2 + 1/6^2 + 1/7^2 +...+ 1/2007^2 > 1/5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+...+\frac{1}{2007^2}<\frac{1}{4\cdot5}+\frac{1}{5\cdot6}+\frac{1}{6\cdot7}+...+\frac{1}{2006\cdot2007}\)
=> \(<\frac{1}{4}-\frac{1}{2007}<\frac{1}{4}\)
\(vậy:\frac{1}{5^2}+\frac{1}{6^2}+...+\frac{1}{2007^2}<\frac{1}{4}\)
b) \(\frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+...+\frac{1}{2007^2}>\frac{1}{5\cdot6}+\frac{1}{6\cdot7}+\frac{1}{7\cdot8}+...+\frac{1}{2007\cdot2008}\)
=> \(>\frac{1}{5}-\frac{1}{2008}>\frac{1}{5}\)
\(vậy:\frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+...+\frac{1}{2007^2}>\frac{1}{5}\)
có thể tham khảo phương pháp giải ở đây https://hoc24.vn/hoi-dap/question/205816.html
Đặt \(A=\frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+...+\frac{1}{2013^2}\)
\(A=\frac{1}{5\cdot5}+\frac{1}{6\cdot6}+\frac{1}{7\cdot7}+...+\frac{1}{2013\cdot2013}\)
Ta có : \(\frac{1}{5\cdot5}< \frac{1}{4\cdot5}\)
\(\frac{1}{6\cdot6}< \frac{1}{5\cdot6}\)
\(\frac{1}{7\cdot7}< \frac{1}{6\cdot7}\)
...
\(\frac{1}{2013\cdot2013}< \frac{1}{2012\cdot2013}\)
=> \(A=\frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+..+\frac{1}{2013^2}< \frac{1}{4\cdot5}+\frac{1}{5\cdot6}+\frac{1}{6\cdot7}+...+\frac{1}{2012\cdot2013}\)
=> \(A< \frac{1}{4}-\frac{1}{2013}\)
=> \(A< \frac{2009}{8052}\)
Lại có \(\frac{2009}{8052}< \frac{1}{4}\)
Theo tính chất bắc cầu => \(A< \frac{1}{4}\)( đpcm )
Sai thì mong bạn bỏ qua