cmr đa thức sau không có nghiệm
x2+2+3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì 5x^2 \(\ge\) 0 (với mọi x)
\(\Rightarrow\) 5x^2+3 \(\ge\) 3 (với mọi x)
Vậy đa thức trên không có nghiệm
- Gỉa sử a là nghiệm nguyên của P(X) .
- Khi đó P(x) có dạng : \(P_{\left(x\right)}=\left(x-a\right)g\left(x\right)\)
- Theo bài ra ta có : \(P\left(x\right)=\left(2-a\right)\left(3-a\right)\left(4-a\right)g\left(2\right)g\left(3\right)g\left(4\right)=154\)
Thấy : \(\left(2-a\right)\left(3-a\right)\left(4-a\right)⋮3\forall a\in Z\)
Mà \(154⋮̸3\)
Vậy đa thức P(x) không có nghiệm nguyên .
Ta có : f(x) = x2 - x + 5
= x2 - \(\frac{1}{2}.2x\)+ \(\left(\frac{1}{2}\right)^2\)+ \(\frac{19}{4}\)
= \(\left(x-\frac{1}{2}\right)^2+\frac{19}{4}\)
vì \(\left(x-\frac{1}{2}\right)^2\ge0\) \(\forall\)x thuộc R
\(\Rightarrow\)\(\left(x-\frac{1}{2}\right)^2+\frac{19}{4}\)> 0 \(\forall\)x thuộc R
vậy ...
Ta có : (x - 3)2 \(\ge0\forall x\in R\)
Nên : 3(x - 3)2 \(\ge0\forall x\in R\)
Suy ra : A = 3(x - 3)2 + 5 \(\ge5\forall x\in R\)
Hay : A = 3(x - 3)2 + 5 \(>0\forall x\in R\)
Vậy đa thức trên vô nghiệm
Ta có :
Xét \(p\left(x\right)=0\)
\(\Rightarrow2\left(x-3\right)^2+5=0\)
\(\Rightarrow2\left(x-3\right)^2=0-5\)
\(\Rightarrow2\left(x-3\right)^2=-5\)
Mà \(2\left(x-3\right)^2\ge0\forall x\)
\(\Rightarrow2\left(x-3\right)^2\ne-5\)
\(\Rightarrow2\left(x-3\right)^2+5\ne0\)
\(\Rightarrow P\left(x\right)\)không có nghiệm
Chúc bạn học tốt !!!
Ta có: g(x) = x2-x-x+3 = x2-x-x+1+2 = x(x-1)-(x-1)+2 = (x-1)2+2
Do (x-1)2 lớn hơn hoặc bằng 0 => g(x) lớn hơn hoặc bằng 2
Vậy g(x) vô nghiệm
Ta có : g(x) = x2 - x - x + 3 = x2 - 2x + 3 = x2 - 2x + 1 + 2 = (x - 1)2 + 2
Vì : (x - 1)2 \(\ge0\forall x\)
Nên : (x - 1)2 + 2 \(\ge2>0\forall x\in R\)
\(\Leftrightarrow\Delta'=m^2-3m-2< 0\)
\(\Leftrightarrow\dfrac{3-\sqrt{17}}{2}< m< \dfrac{3+\sqrt{17}}{2}\)
Thay x2 + 2 + 3 = 0, ta có:
x2 + 2 + 3 = 0
x2 + 5 = 0
Vì mũ chẵn luôn luôn là số dương
=> x2 \(\ge\) 0
=> x2 + 5 > 0
Vậy x2 + 2 + 3 không có nghiệm
Ta có:
\(x^2+2+3=x^2+5\)
\(x^2\ge0\Rightarrow x^2+5>0\)
Vậy đa thức x2 +2+3 không có nghiệm