Tính: 3(22+1).(24+1).(26+1).....(232+1)+2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(=\left(2-1\right)\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(=\left(2^8-1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(=\left(2^{16}-1\right)\left(2^{16}+1\right)\)
\(=2^{32}-1\)
Ta có
N = ( 2 + 1 ) ( 2 2 + 1 ) ( 2 4 + 1 ) ( 2 8 + 1 ) ( 2 16 + 1 ) ( 2 16 + 1 ) = 3 ( 2 2 + 1 ) ( 2 4 + 1 ) ( 2 8 + 1 ) ( 2 16 + 1 ) = [ ( 2 2 – 1 ) ( 2 2 + 1 ) ] ( 2 4 + 1 ) ( 2 8 + 1 ) ( 2 16 + 1 ) = ( 2 4 – 1 ) ( 2 4 + 1 ) ( 2 8 + 1 ) ( 2 16 + 1 ) = ( 2 8 – 1 ) ( 2 8 + 1 ) ( 2 16 + 1 ) = ( 2 16 - 1 ) ( 2 16 + 1 ) = 2 16 2 − 1 = 2 32 − 1 M à 2 32 − 1 > 2 32 ⇒ N < M
Đáp án cần chọn là: A
`A=(2-1)(2+1)(2^2+1)...(2^16+1)`
`=(2^2-1)(2^2+1)....(2^16+1)`
`=(2^4-1)....(2^16+1)`
`=2^32-1<2^32`
`=>A<B`
a)1+2+3+...+99+100=(100+1).100:2=5050
b)22+24+26+...+100+112=(22+112).46:2=3082
a) SSH: (100-1):1+1=100
Tổng: (100+1)x100:2=5050
b) SSH: (112-22):2+1=46
Tổng: (112+22)x46:2=3082
1/
Tổng A là tổng các số hạng cách đều nhau 4 đơn vị.
Số số hạng: $(101-1):4+1=26$
$A=(101+1)\times 26:2=1326$
2/
$B=(1+2+2^2)+(2^3+2^4+2^5)+(2^6+2^7+2^8)+(2^9+2^{10}+2^{11})$
$=(1+2+2^2)+2^3(1+2+2^2)+2^6(1+2+2^2)+2^9(1+2+2^2)$
$=(1+2+2^2)(1+2^3+2^6+2^9)$
$=7(1+2^3+2^6+2^9)\vdots 7$
`@` `\text {Ans}`
`\downarrow`
`1,`
\(1+(-4)+7+(-10)+13\)
`= 1+(7+13)+(-4-10)`
`= 1+10-14`
`= 11-14`
`= -3`
`2, `
\(-2+7+(-12)+17+(-22)\)
`= -2+(7+17)+(-12-22)`
`= -2 + 24 - 24`
`= -2`
`3,`
\(44+45+46+47-24-25-26-27\)
`= (44 - 24)+(45 - 25) + (46 - 26)+(47 - 27)`
`= 20 + 20 + 20 + 20`
`= 40`
`4,`
\((-213)+186+(-14)+217+54+(-49)\)
`= (186 + 54)+(-213-14-49) + 217`
`= 240 - 276 + 217`
`= -36 + 217 = 181`
Tính nhanh
19 + 18 + 17 + 16 + 14 + 21 + 22 + 23 + 24 + 25 + 26
1/3 + 1/4 + 1/5 + 4/6 + 9/12 + 16/20
\(19+18+17+16+14+21+22+23+24+25+26\)
\(=\left(19+21\right)+\left(18+22\right)+\left(17+23\right)+\left(16+24\right)+\left(14+26\right)+25\)
\(=30+30+30+30+30+25\)
\(=175\)
\(\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}+\dfrac{4}{6}+\dfrac{9}{12}+\dfrac{16}{20}\)
\(=\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}+\dfrac{2}{3}+\dfrac{3}{4}+\dfrac{4}{5}\)
\(=\left(\dfrac{1}{3}+\dfrac{2}{3}\right)+\left(\dfrac{1}{4}+\dfrac{3}{4}\right)+\left(\dfrac{1}{5}+\dfrac{4}{5}\right)\)
\(\text{=}1+1+1\)
\(\text{=}3\)
Đặt :
\(A=1+\dfrac{1}{2}+\dfrac{1}{2^2}+.....+\dfrac{1}{2^{99}}\)
\(\Leftrightarrow2A=3+\dfrac{1}{2}+\dfrac{1}{2^2}+....+\dfrac{1}{2^{98}}\)
\(\Leftrightarrow2A-A=\left(3+\dfrac{1}{2}+....+\dfrac{1}{2^{98}}\right)-\left(1+\dfrac{1}{2}+....+\dfrac{1}{2^{99}}\right)\)
\(\Leftrightarrow A=2-\dfrac{1}{2^{99}}\)
Vậy..