K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 12 2023

A = 4 + 42 + 43 +...+ 423 +424

Xét dãy số: 1;2;3;..; 24 dãy số này có 24 số hạng vì

                    24 : 2 = 12

Vậy nhóm hai số hạng liên tiếp của A vào nhau ta có:

      A = (4 + 42) + (43 + 44) + ... + (423 + 424)

     A = (4 + 16) + 42.(4 + 42) + .... + 422.(4 + 42)

     A = 20 + 42.20 + ... + 422.20

     A = 20.( 1 + 42 + ... + 422)

     20 ⋮ 20 ⇒ A = 20.(1 + 42 + ... + 422) ⋮ 20 (đpcm)

     

20 tháng 12 2023

 A = 4 + 42 + 43 + ... + 423 + 424

Dãy số trên có 24 số hạng vì 24 : 3 = 8

Vậy ta nhóm 3 số hạng liên tiếp của A thành nhóm thì 

A = (4 + 42 + 43) + (44 + 45 + 46) + ... + (422 + 423 + 424)

A = 4.(1 + 4 + 42) + 44.(1 + 4 + 42) + ... + 422.(1 + 4 + 42)

A = 4.21 + 44.21 + ... + 422.21

A =21.(4 + 44 + ... + 422)

Vì 21 ⋮ 21 vậy A = 21.(4 + 44 + ... + 422) ⋮ 21

 

 

20 tháng 12 2023

A = 4 + 4² + 4³ + ... + 4²³ + 4²⁴

Số số hạng của A:

24 - 1 + 1 = 24

Do 24 ⋮ 2 nên ta có thể nhóm các số hạng của A thành từng nhóm mà mỗi nhóm có 2 số hạng như sau:

A = (4 + 4²) + (4³ + 4⁴) + ... + (4²³ + 4²⁴)

= 20 + 4².(4 + 4²) + ... + 4²².(4 + 4²)

= 20 + 4².20 + ... + 4²².20

= 20.(1 + 4² + ... + 4²²) ⋮ 20

Vậy A⋮  20 (1)

Do 24 ⋮ 3 nên ta có thể nhóm các số hạng của A thành từng nhóm mà mỗi nhóm có 3 số hạng như sau:

A = (4 + 4² + 4³) + (4⁴ + 4⁵ + 4⁶) + ... + (4²² + 4²³ + 4²⁴)

= 4.(1 + 4 + 4²) + 4⁴.(1 + 4 + 4²) + ... + 4²².(1 + 4 + 4²)

= 4.21 + 4⁴.21 + ... + 4²².21

= 21.(4 + 4⁴ + ... + 4²²) ⋮ 21

Vậy A ⋮ 21 (2)

Từ (1) và (2) ⇒ A ⋮ 20 . 21 (do 20 và 21 nguyên tố cùng nhau)

⇒ A ⋮ 420

Vậy A chia hết cho 20; 21; 420

20 tháng 12 2023

loading...  loading...  

11 tháng 11 2016

Có. T= 41+42+.......+423+424

   41T=42+43+........+424+425

Ta lấy 41T-T, ta được:

41T-T=425-41

     3T=425-41

       T=(425-41):3

Vậy T chia hết cho 3

nhớ k nhé

11 tháng 11 2016

41+42+...+423+424 chia hết cho 21 => 41+42+...+423+424 chia hết cho 3

10 tháng 10 2016

số mũ của dãy cộng :

   ( 24 - 1 ) : 1 + 1 = 24 ( mũ )

tổng các mũ :

   ( 24 + 1 ) x 24 : 2 = 300

A = 3300

vậy thì a có chia hết cho 120 không . 

câu trả lời theo mình là không 

nhé !

mong các bạn giúp đỡ trong thời gian tới 

10 tháng 10 2016

A=3+32+33+34+...+323+324

=(3+32+33+34)+...+(321+322+323+324)

=3.(3+32+33+34)+...+321.(3+32+33+34)

=3.120+...+321.120

=120.(3+...+321) chia hết cho 120

17 tháng 12 2021

A=1+4+4^2+...+4^59A=1+4+4^2+...+4^59

A=(1+4)+(4^2+4^3)+...+(4^58+4^59)A=(1+4)+(4^2+4^3)+...+(4^58+4^59)

A=(1+4)+4^2(1+4)+...+4^58(1+4)A=(1+4)+4^2(1+4)+...+4^58(1+4)

A=5+4^2.5+...+4^58.5A=5+4^2.5+...+4^58.5

A=5(1+4^2+...+4^48)A=5(1+4^2+...+4^58)

A=5(1+4^2+...+4^58) chia hết cho 5
vậy A chia hết cho 5

A=1+4+4^2+...+4^59A=1+4+4^2+...+4^59

A=(1+4+4^2)+(4^3+4^4+4^5)+...+(4^57+4^58+4^59)A=(1+4+4^2)+(4^3+4^4+4^5)+...+(4^57+4^58+4^59)

A=(1+4+4^2)+4^3(1+4+4^2)+...+4^57(1+4+4^2)A=(1+4+4^2)+4^3(1+4+4^2)+...+4^57(1+4+4^2)

A=21+4^3.21+...+4^57.21A=21+4^3.21+...+4^57.21

A=21(1+4^3+...+4^57)A=21(1+4^3+...+4^57)

A=21(1+4^3+...+4^57) chia hết cho 21
vậy A chia hết cho 21
mik làm xong rồi nhớ k cho mik nha mik cảm ơn

9 tháng 9 2017

*Ta có: A\(=2^1+2^2+2^3+2^4+...+2^{2010}\)

              \(=\left(2+2^2\right)+2^2\times\left(2+2^2\right)+...+2^{2008}\times\left(2+2^2\right)\)

              \(=\left(2+2^2\right)\times\left(1+2^2+2^3+...+2^{2008}\right)\)

              \(=6\times\left(2^2+2^3+...+2^{2008}\right)\)

              \(=3\times2\times\left(2^2+2^3+...+2^{2008}\right)\)

               \(\Rightarrow A⋮3\)

*Ta có: A \(=2^1+2^2+2^3+2^4+...+2^{2010}\)

               \(=2\times\left(1+2+2^2\right)+2^4\times\left(1+2+2^2\right)+...+2^{2008}\times\left(1+2+2^2\right)\)

               \(=\left(1+2+2^2\right)\times\left(2+2^4+2^7+...+2^{2008}\right)\)

               \(=7\times\left(2+2^4+2^7+...+2^{2008}\right)\)

                \(\Rightarrow A⋮7\)

Mình sửa lại đề C 1 chút xíu

*Ta có: C \(=3^1+3^2+3^3+3^4+...+3^{2010}\)

               \(=\left(3+3^2\right)+3^2\times\left(3+3^2\right)+...+3^{2008}\times\left(3+3^2\right)\)

               \(=\left(3+3^2\right)\times\left(1+3^2+3^3+...+3^{2008}\right)\)

               \(=12\times\left(1+3^2+3^3+...+3^{2008}\right)\)

               \(=4\times3\times\left(1+3^2+3^3+...+3^{2008}\right)\)

                \(\Rightarrow C⋮4\)

Các câu khác làm tương tự nhé. Chúc bạn học tốt!

10 tháng 12 2017

Thanks bạn

DD
16 tháng 12 2020

a) \(A=2^1+2^2+2^3+2^4+...+2^{2010}\)

\(A=\left(2^1+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{2009}+2^{2010}\right)\)

\(A=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{2009}\left(1+2\right)\)

\(A=3\left(2+2^3+...+2^{2009}\right)⋮3\)

\(A=2^1+2^2+2^3+2^4+...+2^{2010}\)

\(A=\left(2^1+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+...+\left(2^{2008}+2^{2009}+2^{2010}\right)\)

\(A=2\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+...+2^{2008}\left(1+2+2^2\right)\)

\(A=7\left(2^1+2^4+...+2^{2008}\right)⋮7\)

Các ý dưới bạn làm tương tự nhé. 

23 tháng 12 2024

HHehe

29 tháng 10 2021

Tôi  tên  là  Ngọc  Anh  . Năm  nay  Tôi 11 tuổi.  Tôi  không  biết  bài  này  

28 tháng 10 2022

câu a của bạn thiếu 2 mũ 2