Tinh:
\(\frac{2n-7}{n-5}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
\(\lim \frac{3n^2+5n+4}{2-n^2}=\lim \frac{\frac{3n^2+5n+4}{n^2}}{\frac{2-n^2}{n^2}}=\lim \frac{3+\frac{5}{n}+\frac{4}{n^2}}{\frac{2}{n^2}-1}=\frac{3}{-1}=-3\)
2.
\(\lim \frac{2n^3-4n^2+3n+7}{n^3-7n+5}=\lim \frac{\frac{2n^3-4n^2+3n+7}{n^3}}{\frac{n^3-7n+5}{n^3}}=\lim \frac{2-\frac{4}{n}+\frac{3}{n^2}+\frac{7}{n^3}}{1-\frac{7}{n^2}+\frac{5}{n^3}}=\frac{2}{1}=2\)
3.
\(\lim (\frac{2n^3}{2n^2+3}+\frac{1-5n^2}{5n+1})=\lim (n-\frac{3n}{2n^2+3}+\frac{1}{5}-n-\frac{1}{5n+1})\)
\(=\frac{1}{5}-\lim (\frac{3n}{2n^2+3}+\frac{1}{5n+1})=\frac{1}{5}-\lim (\frac{3}{2n+\frac{3}{n}}+\frac{1}{5n+1})=\frac{1}{5}-0=\frac{1}{5}\)
4.
\(\lim \frac{1+3^n}{4+3^n}=\lim (1-\frac{3}{4+3^n})=1-\lim \frac{3}{4+3^n}=1-0=1\)
5.
\(\lim \frac{4.3^n+7^{n+1}}{2.5^n+7^n}=\lim \frac{\frac{4.3^n+7^{n+1}}{7^n}}{\frac{2.5^n+7^n}{7^n}}\)
\(=\lim \frac{4.(\frac{3}{7})^n+7}{2.(\frac{5}{7})^n+1}=\frac{7}{1}=7\)
Ta thấy \(\frac{3}{4}=\frac{1}{1^2}-\frac{1}{2^2};\frac{5}{36}=\frac{1}{2^2}-\frac{1}{3^2};...\)
Tổng quát: \(\frac{2n+1}{n^2\left(n+1\right)^2}=\frac{\left(n+1\right)^2-n^2}{n^2\left(n+1\right)^2}=\frac{1}{n^2}-\frac{1}{\left(n+1\right)^2}\)
Đặt \(A=\frac{3}{4}+\frac{5}{36}+...+\frac{2n+1}{n^2\left(n+1\right)^2}\)
\(\Rightarrow A=1-\frac{1}{2^2}+\frac{1}{2^2}-\frac{1}{3^2}+...+\frac{1}{n^2}-\frac{1}{\left(n+1\right)^2}\)
\(A=1-\frac{1}{\left(n+1\right)^2}\)
Do \(\left(n+1\right)^2>0\Rightarrow A< 1.\)
\(A=\frac{2n+7}{n-5}+\frac{1-n}{n-5}=\frac{2n+7+1-n}{n-5}=\frac{n+8}{n-5}=\frac{n-5+13}{n-5}=1+\frac{13}{n-5}\)
A là số nguyên <=> \(\frac{13}{n-5}\)là số nguyên
<=> \(13⋮n-5\)
<=> \(n-5\inƯ\left(13\right)=\left\{\pm1;\pm13\right\}\)
n-5 | 1 | -1 | 13 | -13 |
n | 6 | 4 | 18 | -8 |
Vậy n thuộc các giá trị trên
\(A=\frac{2n+8}{5}+\frac{-n-7}{5}\)
\(\Leftrightarrow A=\frac{2n+8-n-7}{5}\)
\(\Leftrightarrow A=\frac{n+1}{5}\)
Để A nguyên thì \(\frac{n+1}{5}\)nguyên
\(\Rightarrow\left(n+1\right)⋮5\)
\(\Leftrightarrow n+1\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
Ta có bảng sau :
\(n+1\) | \(-5\) | \(-1\) | \(1\) | \(5\) |
\(m\) | \(-6\) | \(-2\) | \(0\) | \(4\) |
\(\frac{2n-7}{n-5}\)=\(\frac{n-5+n-5+3}{n-5}\)=\(\frac{n-5}{n-5}\)+\(\frac{n-5}{n-5}\)+\(\frac{3}{n-5}\)=1+1+\(\frac{3}{n-5}\)=2+\(\frac{3}{n-5}\)