Tìm nghiem dưong của pt:
\(7x^2+7x=\sqrt{\dfrac{4x+9}{28}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x^2 + 7x = căn[(4x+9)/28] (1)
<=> 7(x+1/2)^2 - 7/4 = căn[(4x+9)/28]
Đặt căn[(4x+9)/28] = y + 1/2 (2)
<=> 7y^2 + 7y = x+1/2 (bình phương 2 vế rồi thu gọn) (3)
Mặt khác thay (2) vào (1) ta được: 7x^2 + 7x = y +1/2 (4)
Lấy (3)-(4), ta có: 7(x-y)(x+y+1)=-(x-y) <=>(x-y)(7x+7y+8)=0
<=> x-y =0 (vì 7x+7y+8 >0)
<=> x=y
7x2+7x=√4x+9287x2+7x=4x+928
⇔7(x+12)2−74=√17(x+12)+14⇔7(x+12)2−74=17(x+12)+14
Đặt √17(x+12)+14=y17(x+12)+14=y
Khi đó, ta có hệ đối xứng loại (II) như sau:
{7y2−(x+12)=747(x+12)2−y=74{7y2−(x+12)=747(x+12)2−y=74
Đến đây bạn làm tiếp được rồi
mik tự trả lời nhé (đương nhiên ko tick nha giải cho mn hỉu thoy =))
C1: đặt \(\sqrt{\dfrac{4x+9}{28}}=y+\dfrac{1}{2}\)
=>\(\dfrac{4x+9}{28}=y^2+y+\dfrac{1}{4}\Leftrightarrow7y^2+7y=x+\dfrac{1}{2}\)
kết hợp vs pt đầu ta được hpt đối xứng \(\left\{{}\begin{matrix}7x^2+7x=y+\dfrac{1}{2}\\7y^2+7y=x+\dfrac{1}{2}\end{matrix}\right.\)
(mời @Neet giải tip nha mỏi tay )
C2:
pt <=> \(28\left(49x^4+98x^3+49x^2\right)=4x+9\)
<=>\(\left(14x^2+12x-1\right)\left(98x^2+112x+9\right)=0\)
=> do yourself !!!
a) \(\dfrac{9x-7}{\sqrt{7x+5}}=\sqrt{7x+5}\) (1)
\(\Leftrightarrow9x-7=\sqrt{\left(7x+5\right)\left(7x+5\right)}\)
\(\Leftrightarrow9x-\sqrt{\left(7x+5\right)\left(7x+5\right)}=7\)
\(\Leftrightarrow9x-\sqrt{\left(7x+5\right)^2}=7\)
\(\Leftrightarrow9x-\left|7x+5\right|=7\)
\(\Leftrightarrow\left[{}\begin{matrix}9x-\left(7x+5\right)=7\left(đk:7x+5\ge0\right)\\9x-\left[-\left(7x+5\right)\right]=7\left(đk:7x+5< 0\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=6\left(đk:x\ge-\dfrac{5}{7}\right)\\x=\dfrac{1}{8}\left(đk:x< -\dfrac{5}{7}\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=6\\x\in\varnothing\end{matrix}\right.\)
\(\Leftrightarrow x=6\)
Vậy tập nghiệm phương trình (1) là \(S=\left\{6\right\}\)
b) \(\sqrt{4x-20}+3\sqrt{\dfrac{x+5}{9}}-\dfrac{1}{3}\sqrt{9x-45}=4\) (2)
\(\Leftrightarrow\sqrt{4\left(x-5\right)}+3\cdot\dfrac{\sqrt{x+5}}{3}-\dfrac{1}{3}\cdot\sqrt{9\left(x-5\right)}=4\)
\(\Leftrightarrow\sqrt{4}\sqrt{x-5}+\sqrt{x+5}-\dfrac{1}{3}\cdot\sqrt{9}\sqrt{x-5}=4\)
\(\Leftrightarrow2\sqrt{x-5}+\sqrt{x+5}-\dfrac{1}{3}\cdot3\sqrt{x-5}=4\)
\(\Leftrightarrow2\sqrt{x-5}+\sqrt{x+5}-\sqrt{x-5}=4\)
\(\Leftrightarrow\sqrt{x-5}+\sqrt{x+5}=4\)
\(\Leftrightarrow\sqrt{x-5}=4-\sqrt{x+5}\)
\(\Leftrightarrow x-5=\left(4-\sqrt{x+5}\right)^2\)
\(\Leftrightarrow x-5=16-8\sqrt{x+5}+x+5\)
\(\Leftrightarrow-5=16-8\sqrt{x+5}+5\)
\(\Leftrightarrow-5=21-8\sqrt{x+5}\)
\(\Leftrightarrow8\sqrt{x+5}=21+5\)
\(\Leftrightarrow8\sqrt{x+5}=26\)
\(\Leftrightarrow\sqrt{x+5}=\dfrac{13}{4}\)
\(\Leftrightarrow x+5=\dfrac{169}{16}\)
\(\Leftrightarrow x=\dfrac{169}{16}-5\)
\(\Leftrightarrow x=\dfrac{89}{16}\)
Vậy tập nghiệm phương trình (2) là \(S=\left\{\dfrac{89}{16}\right\}\)
Nick cũ không đi giải lấy nick mới giải làm gì vậy Tuấn Anh Phan Nguyễn ? :D
a: \(\Leftrightarrow\dfrac{2x-3}{x-1}=4\)
=>4x-4=2x-3
=>2x=1
hay x=1/2
b: \(\Leftrightarrow\sqrt{\dfrac{2x-3}{x-1}}=2\)
=>(2x-3)=4x-4
=>4x-4=2x-3
=>2x=1
hay x=1/2(nhận)
c: \(\Leftrightarrow\sqrt{2x+3}\left(\sqrt{2x-3}-2\right)=0\)
=>2x+3=0 hoặc 2x-3=4
=>x=-3/2 hoặc x=7/2
e: \(\Leftrightarrow2\sqrt{x-5}+\sqrt{x-5}-\sqrt{x-5}=4\)
=>căn (x-5)=2
=>x-5=4
hay x=9
`7x^2+7x=\sqrt{(4x+9)/28}`
Nhân 2 vế của pt cho 28 ta có:
`196x^2+196x=2\sqrt{28x+63}`
`<=>196x^2+224x+64=28x+63+2\sqrt{28x+63}+1`
`<=>(14x+8)^2=(\sqrt{28x+63}+1)^2`
Đến đây chai 2 trường hợp rồi giải thôi :D