Tìm tập các giá trị của x thỏa mãn đẳng thức:
(x-3)\(^{x+1}\)- (x-3)\(^{11}\)=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
th1:(x-3)x+1 = (x-3)11
x+1 = 11
x = 10
th2: x-3 =0
x = 3
th3: x - 3 = 1
x = 4
1) Quy luật cứ mũ chẵn 2 số tận cùng là 01 còn mũ lẻ thì 2 số tận cùng là 51
Vậy 2 số tận cùng của 51^51 là 51
2)pt<=> x-2=0 hoặc (x-2)^2=1 <=> x=2 hoặc x=1 hoặc x=3
Vậy trung bìng cộng là 2
4)Pt<=> (x-7)^(x+1)=0 hoặc 1-(x-7)^10=0=> x=7 hoặc x=8 hoặc x=6
Do x là số nguyên tố => x=7 TM
5)3y=2z=> 2z-3y=0
4x-3y+2z=36=> 4x=36=> x=9
=> y=2.9=18=> z=3.18/2=27
=> x+y+z=9+18+27=54
6)pt<=> x^2=0 hoặc x^2=25 <=> x=0 hoặc x=-5 hoặc x=5
7)pt<=> (3x+2)(5x+1)=(3x-1)(5x+7)
Nhân ra kết quả cuối cùng là x=3
8)ta có (3x-2)^5=-243=-3^5
=> 3x-2=-3 => x=-1/3
9)Câu này chưa rõ ý bạn muốn hỏi!
10)2x-3=4 hoặc 2x-3=-4
<=> x=7/2 hoặc x=-1/2
11)x^4=0 hoặc x^2=9
=> x=0 hoặc x=-3 hoặc x=3
Ta có: - 3 = 3.(-1) = 1.(-3)
Như vậy các số thỏa mãn đẳng thức trên chỉ có thể là -3 hoặc -1
Với x = -3, ta có: 4 + x = 4 + (-3) = 1 ⇒⇒ (-3).1 = -3 (thỏa mãn)
Với x = -1, ta có: 4 + x = 4 + (-1) = 3 ⇒⇒ (-3).1 = -3 (thỏa mãn)
Vậy x = -3 hoặc x = -1
1) 7-x3-x2-x=7-x(x2-x-1) vì x(x2-x-1) phải bé hơn 7 nên Giá trị lớn nhất của biểu thức B là 7
2) (x-2)(2x+14)=0 ta đc x-2=0 và 2x+14=0
*Xét trường hớp 1: x-2=0 =>x=2
*Xét trường hợp 2: 2x+14=0 =>2x=-14 =>x= -7
Vậy x={2;-7}
2. GIẢI
Ta có : \(\left(-2a^{ }\right)^3\).\(\left(3b^{ }\right)^2\)
Thay a=-1;b=-3 ta được:
\(\left[\left(-2\right).\left(-1\right)\right]^3\).\(\left[3.\left(-3\right)\right]^2\)=\(2^3.\left(-9\right)^2\)=\(8.81\)=\(648\)
1. GIẢI
Ta có : (x-1)(x+2)=0
=>\(\orbr{\begin{cases}x-1=0\\x+2=0\end{cases}}\)=>\(\orbr{\begin{cases}x=0+1\\x=0-2\end{cases}}\)=>\(\orbr{\begin{cases}x=1\\x=-2\end{cases}}\)
Vậy \(x\in\){-2;1}
câu hỏi tương tự
<=>\(\left(x-3\right)\left[\left(x-3\right)^x-\left(x-3\right)^{10}\right]=0\)
<=>\(\orbr{\begin{cases}x-3=0\\\left(x-3\right)^x-\left(x-3\right)^{10}=0\end{cases}}\)
<=>\(\orbr{\begin{cases}x=3\\\left(x-3\right)^x=\left(x-3\right)^{10}\end{cases}}\)
<=>\(\orbr{\begin{cases}x=3\\x=10\end{cases}}\)
Vậy x={3 ; 10}