TIM GTNN: \(c=x^2+2y^2+4x-2xy-5y\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
a)Đặt A=\(x^2-4xy+5y^2-2y+3\)
\(\Leftrightarrow x^2-4xy+4y^2+y^2-2y+1+2\)
\(\Leftrightarrow\left(x-2y\right)^2+\left(y-1\right)^2+2\)
Vì \(\left(x-2y\right)^2\ge0;\left(y-1\right)^2\ge0\)
Nên \(\left(x-2y\right)^2+\left(y-1\right)^2+2\ge2\)
Dấu = xảy ra khi \(\hept{\begin{cases}x-2y=0\\y-1=0\end{cases}\Rightarrow}\hept{\begin{cases}x=2y\\y=1\end{cases}}\Rightarrow\hept{\begin{cases}x=2\\y=1\end{cases}}\)
Vậy Min A = 2 khi x = 2 ; y = 1
b)k ko hỉu
a)A= \(x^2-4xy+5y^2-2y+3\)
\(=x^2-4xy+4y^2+y^2-2y+1-2\)
\(=\left(x-2y\right)^2+\left(y-1\right)^2-2\ge-2\)
MIN A=-2 khi\(\orbr{\begin{cases}x-2y=0\\y-1=0\end{cases}\Rightarrow\orbr{\begin{cases}x=2\\y=1\end{cases}}}\)Vậy.......
b)\(B=x^2-2xy+2y^2-x+y\)????
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
a)\(2x^2+y^2+4x-2y-2xy+10=2x^2+y^2+4x-2y\left(x+1\right)+10\)
\(=y^2-2y\left(x+1\right)+2\left(x^2+2x+1\right)+8\)
\(=y^2-2y\left(x+1\right)+2\left(x+1\right)^2+8\)
\(=\left(y+x+1\right)^2+\left(x+1\right)^2+8\ge8\)
Dấu "=" xảy ra khi x=-1 và y=0
![](https://rs.olm.vn/images/avt/0.png?1311)
\(D=x^2-x+1=\left(x^2-x+\frac{1}{4}\right)+\frac{3}{4}=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)
Vậy GTNN của D là \(\frac{3}{4}\)khi x = \(\frac{1}{2}\)
\(E=x\left(x-3\right)=x^2-3x=\left(x^2-3x+\frac{9}{4}\right)-\frac{9}{4}=\left(x-\frac{3}{2}\right)^2-\frac{9}{4}\ge-\frac{9}{4}\)
Vậy GTNN của E là \(-\frac{9}{4}\)khi x = \(\frac{3}{2}\)
\(G=x^2+5y^2+2xy-2y+100\)
\(G=\left(x^2+2xy+y^2\right)+\left(4y^2-2y+\frac{1}{4}\right)+\frac{399}{4}\)
\(G=\left(x+y\right)^2+\left(2y-\frac{1}{2}\right)^2+\frac{399}{4}\ge\frac{399}{4}\)
Vậy GTNN của G là \(\frac{399}{4}\)khi x = \(-\frac{1}{4}\); y = \(\frac{1}{4}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(a)\left(-3x^2y-2xy^2+6\right)+\left(-x^2y+5xy^2-1\right)\)
\(=-3x^2y-2xy^2+6+-x^2y+5xy^2-1\)
\(=\left(-3x^2y-x^2y\right)+\left(-2xy^2+5xy^2\right)+\left(6-1\right)\)
\(=-4x^2y+3xy^2+5\)
\(b)\left(1,6x^3-3,8x^2y\right)+\left(-2,2x^2y-1,6x^3+0,5xy^2\right)\)
\(=1,6x^3-3,8x^2y+-2,2x^2y-1,6x^3+0,5xy^2\)
\(=\left(1,6x^3-1,6x^3\right)+\left(-3,8x^2y+-2,2x^2y\right)+0,5xy^2\)
\(=-6x^2y+0,5xy^2\)
\(c)\left(6,7xy^2-2,7xy+5y^2\right)-\left(1,3xy-3,3xy^2+5y^2\right)\)
\(=6,7xy^2-2,7xy+5y^2-1,3xy+3,3xy^2-5y^2\)
\(=\left(6,7xy^2+3,3xy^2\right)+\left(-2,7xy-1,3xy\right)+\left(5y^2-5y^2\right)\)
\(=10xy^2+-4xy\)
\(=10xy^2-4xy\)
\(d)\left(3x^2-2xy+y^2\right)+\left(x^2-xy+2y^2\right)-\left(4x^2-y^2\right)\)
\(=3x^2-2xy+y^2+x^2-xy+2y^2-4x^2+y^2\)
\(=\left(3x^2+x^2-4x^2\right)+\left(-2xy-xy\right)+\left(y^2+2y^2+y^2\right)\)
\(=-3xy+4y^2\)
\(e)\left(x^2+y^2-2xy\right)-\left(x^2+y^2+2xy\right)+\left(4xy-1\right)\)
\(=x^2+y^2-2xy-x^2-y^2-2xy+4xy-1\)
\(=\left(x^2-x^2\right)+\left(y^2-y^2\right)+\left(-2xy-2xy+4xy\right)-1\)
\(=-1\)
\(C=x^2+2y^2+4x-2xy-5y\)
\(=\left[\left(x^2-2xy+y^2\right)+\left(4x-4y\right)+4\right]+\left(y^2-y+\frac{1}{4}\right)-\frac{17}{4}\)
\(=\left[\left(x-y\right)^2-4\left(x-y\right)+4\right]+\left(y^2-2.\frac{1}{2}.y+\frac{1}{4}\right)-\frac{17}{4}\)
\(=\left(x-y-2\right)^2+\left(y-\frac{1}{2}\right)^2-\frac{17}{4}\ge-\frac{17}{4}\forall x;y\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x-y-2=0\\y-\frac{1}{2}=0\end{cases}\Rightarrow\hept{\begin{cases}x=-\frac{3}{2}\\y=\frac{1}{2}\end{cases}}}\)
Vậy \(C_{min}=-\frac{17}{4}\) tại \(x=-\frac{3}{2};y=\frac{1}{2}\)