Cho 2 số x,y dương thỏa mãn: \(x^2+x^2y^2-2y=x^3+2y^2-4y+3=0\)Tính giá trị của Q=\(x^2+y^2\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: x2 + x2y2 - 2y = 0
\(\Rightarrow\)x2 + x2y2 + y2 - 2y + 1 - y2 - 1 = 0
\(\Rightarrow\)(x2 - 1) + (x2y2 - y2) + (y - 1)2 = 0
\(\Rightarrow\)(x2 - 1) + y2(x2 - 1) + (y - 1)2 = 0
\(\Rightarrow\)(x2 - 1)(1 + y2) + (y - 1)2 = 0
\(\Rightarrow\)(x2 - 1)(1 + y2) = -(y - 1)2 \(\le\)0 V y
\(\Rightarrow\)x2 - 1 \(\le\)0 V x ( vì 1 + y2 > 0 , V y )
\(\Rightarrow\)(x - 1)(x + 1) \(\le\)0
\(\Rightarrow\)x - 1 và x + 1 trái dấu
Do đó \(\hept{\begin{cases}x-1\ge0\\x+1\le0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}x\ge1\\x\le-1\end{cases}}\) ( vô lý )
Hoặc \(\hept{\begin{cases}x-1\le0\\x+1\ge0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}x\le1\\x\ge-1\end{cases}}\) \(\Leftrightarrow\)-1\(\le\)x \(\le\)1 (*)
Lại có: x3 + 2y2 - 4y + 3 = 0
\(\Rightarrow\)(x3 + 1) + 2(y2 - 2y + 1) = 0
\(\Rightarrow\)(x3 + 1) + 2(y - 1)2 = 0
\(\Rightarrow\)x3 + 1 = -2(y - 1)2 \(\le\)0, V y
\(\Rightarrow\)x3 + 1 \(\le\)0, V x
\(\Rightarrow\)(x + 1)(x2 - x + 1) \(\le\)0
\(\Rightarrow\)x + 1 \(\le\)0 ( vì x2 - x + 1 = (x - 1/2 )2 + 3/4 > 0, V x )
\(\Rightarrow\)x \(\le\)-1 (**)
Từ (*) và (**) suy ra x = -1 \(\Rightarrow\)(-1)2 + (-1)2 . y2 - 2y = 0
\(\Rightarrow\)1 + y2 - 2y = 0
\(\Rightarrow\)( y - 1 )2 = 0 \(\Rightarrow\)y = 1
\(\Rightarrow\)x2 + y2 = (-1)2 + 12 = 2
Ta co: a = x^3 - 8y^3 => a = ( x - 2y ) ( x^2 + 2xy + 4y^2 ) => a = 5. ( 29 + 2xy) ( vi x - 2y = 5 va x^2 + 4y^2 = 29 ) (1)
Mat khac : x - 2y = 59(gt) => ( x - 2y )^2 = 25 => x^2 - 4xy + 4y^2 = 25 => 29 - 4xy = 25 ( vi x^2 + 4y^2 = 29 )
=> xy = 1 (2)
Ta có:
\(x^2+x^2y^2-2y=0\)
\(\Leftrightarrow x^2=\frac{2y}{y^2+1}\le1\)(cái này chứng minh đơn giản b tự làm lấy nhé)
\(\Leftrightarrow-1\le x\le1\left(1\right)\)
Ta lại có:
\(x^3+2y^2-4y+3=0\)
\(\Leftrightarrow x^3=-1-2\left(y-1\right)^2\le-1\left(2\right)\)
Từ (1) và (2) \(\Rightarrow x=-1\)
\(\Rightarrow y=1\)
\(\Rightarrow x^2+y^2=1+1=2\)
kdfjeuy;r;