Biết với \(a,b>0;a,b\in R\)
Thì \(a>b\Leftrightarrow\sqrt{a}>\sqrt{b}\)
\(a>b\Leftrightarrow a^2>b^2\)
Hãy so sánh
a) \(3\sqrt{2}\)và \(2\sqrt{3}\)
b) \(7\sqrt{6}\)và \(6\sqrt{7}\)
Giúp mik nha____mik cần gấp lắm-------ai nhanh mik tick cho ha >~<
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a.\) \(a.b< 0\)
\(\Leftrightarrow a\) và \(b\) là 2 số khác dấu.
Mà: \(a>b\)
\(\Rightarrow\) \(a\) là số âm và \(b\) là số dương.
\(b.\) \(a.b>0\)
\(\Leftrightarrow a\) và \(b\) cùng dấu
Mà: \(a+b< 0\)
\(\Rightarrow a\) và \(b\) là số âm.
Có: \(a^2+b^2=1-2ab\)
\(\Rightarrow a^2+b^2+2ab=1\Rightarrow\left(a+b\right)^2=1\)
Mà: \(a>0;b>0\Rightarrow a+b>0\)
Do đó: \(a+b=1\)
Có: \(M=a^3+b^3+3ab=a^3+b^3+3ab\left(a+b\right)=\left(a+b\right)^3=1^3=1\)
Ta có : M=a3+b3+3ab
=(a+b)(a2-ab+b2)+3ab=(a+b)(a2+b2-ab)+3ab
Ma : a2+b2=1-2ab
\(\Rightarrow\)(a+b)(a2+b2-ab)+3ab
=(a+b)(1-2ab-ab)+3ab
=(a+b)(1-3ab)+3ab
=a+b
Ma : a và b là hai số dương \(\Rightarrow\)a>0 va b>0
\(\Rightarrow\)Gia tri cua bieu thuc M=a3+b3+3ab = a+b .
ta có \(a< a+100\)(với a >0)
\(b< b+100\)(với b >0)
\(\Rightarrow\frac{a}{b}< \frac{a+100}{b+100}\)
Ta có :
\(M=\left(a+1\right)\left(1+\frac{a}{b}\right)+\left(b+1\right)\left(1+\frac{1}{a}\right)\)
\(=2+\frac{a}{b}+\frac{b}{a}+a+b+\frac{1}{a}+\frac{1}{b}\ge2+2+a+b+\frac{4}{a+b}\)
\(=4+a+b+\frac{2}{a+b}+\frac{2}{a+b}\ge4+2\sqrt{\left(a+b\right)\frac{2}{a+b}}+\frac{2}{\sqrt{2\left(a^2-b^2\right)}}=4+3\sqrt{2}\)
Vậy \(_{Min}M=4+3\sqrt{2}\)khi \(a=b=\frac{1}{\sqrt{2}}\)
b, \(a+b+2\sqrt{a.b}=\sqrt{a^2}+\sqrt{b^2}+2\sqrt{ab}=\left(\sqrt{a}+\sqrt{b}\right)^2\) ( Vì a, b >= 0 )
c, \(a+b-2\sqrt{a.b}=\sqrt{a^2}+\sqrt{b^2}-2\sqrt{ab}=\left(\sqrt{a}-\sqrt{b}\right)^2\)( Vì a, b >= 0 )
a) Ta có: \(3\sqrt{2}=\sqrt{3^2.2}=\)\(\sqrt{18}\)
\(2\sqrt{3}=\sqrt{2^2.3}=\sqrt{12}\)
Do \(\sqrt{18}>\sqrt{12}=>3\sqrt{2}>2\sqrt{3}\)
b) tương tự trên
bạn thử bình phương 2 vế lên rùi so sánh
so sánh song thì kết luận