tìm số nguyên x để: x+2 chia hết x-7
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


\(2x^2+x-7=2x^2-8+x-2+3=2\left(x^2-4\right)+\left(x-2\right)+3\)
\(=2\left(x-2\right)\left(x+2\right)+\left(x-2\right)+3=\left(x-2\right)\left(2x+5\right)+3\)chia hết cho x-2
mà (x-2)(2x+5) chia hết cho x-2 => 3 chia hết cho x-2
=> \(x-2\inƯ\left(3\right)=\left\{-3;-1;3\right\}\Leftrightarrow x\in\left\{-1;1;5\right\}\)

Câu 1:
Ta có: 1/ x + 14 chia hết cho 7 mà 14 chia hết cho 7 => x chia hết cho 7 => x \(\in\)B (7)
2/ x - 16 chia hết cho 8 mà 16 chia hết cho 8 => x chia hết cho 8 => x \(\in\)B (8)
3/ 54 + x chia hết cho 9 mà 54 chia hết cho 9 => x chia hết cho 9 => x \(\in\)B (9)
Từ 1/ ; 2/ ; 3/ ta có: x \(\in\)BC (7 ; 8 ; 9)
Mà: x bé nhất => x = BCNN (7 ; 8 ; 9) = 504
Vậy x = 504
mình cần cách trình bày vì cô giáo chưa dạy mình cách trình bày dạng này

x^4 -x ^3 + 6x^2 - x + n x^2-x+5 x^2+1 - x^4-x^3+5x^2 x^2-x+n - x^2-x+n 0
ĐỂ x4 - x3 + 6x2 -x \(⋮x^2-x+5\)
\(\Rightarrow x-5=0\Rightarrow x=5\)
b , ta có : \(3x^3+10x^2-5⋮3x+1\)
\(\Rightarrow3x^3+x^2+9x^2+3x-3x-1-4⋮3x+1\)
\(\Rightarrow x\left(3x+1\right)+3x\left(3x+1\right)-\left(3x+1\right)-4⋮3x+1\)
mà : \(\left(3x+1\right)\left(4x-1\right)⋮3x+1\)
\(\Rightarrow4⋮3x+1\Rightarrow3x+1\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)
Nếu : 3x + 1 = 1 => x = 0 ( TM )
3x + 1 = -1 => x = -2/3 ( loại )
3x + 1 = 2 => x = 1/3 ( loại )
3x + 1 = -2 => x = -1 ( TM )
3x + 1 = 4 => x = 1 ( TM )
3x + 1 = -1 => x = -5/3 ( loại )
\(\Rightarrow x\in\left\{0;\pm1\right\}\)

Có p; q ; p -q ; p + q là các số nguyên tố
=> p > q
Th1: q > 2
=> p; q là số chẵn
=> p - q ; p + q là các số chẵn => loại
Th2: q = 2
Ta tìm p để p; p - 2 ; p + 2 là các số nguyên tố
+) Nếu p - 2 = 3 => p = 5 => p + 2 = 7 là các số nguyên tố => p = 5 thỏa mãn
+) Nếu p - 2 = 3k + 1 => p = 3 k + 3 không là số nguyên tố=> loại
+) Nếu p - 2 = 3k + 2 => p = 3k + 4 => p + 2 = 3k + 6 không là số nguyên tố => loại
Vậy p = 5; q = 2

(a) \(f\left(x\right)⋮g\left(x\right)\Rightarrow\dfrac{x^2-5x+9}{x-3}\in Z\)
Ta có: \(\dfrac{x^2-5x+9}{x-3}\left(x\ne3\right)=\dfrac{x\left(x-3\right)-2\left(x-3\right)+3}{x-3}=x-2+\dfrac{3}{x-3}\)nguyên khi và chỉ khi: \(\left(x-3\right)\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
\(\Rightarrow\left[{}\begin{matrix}x-3=1\\x-3=-1\\x-3=3\\x-3=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=2\\x=6\\x=0\end{matrix}\right.\) (thỏa mãn).
Vậy: \(x\in\left\{0;2;4;6\right\}\).
(b) \(f\left(x\right)⋮g\left(x\right)\Rightarrow\dfrac{2x^3-x^2+6x+2}{2x-1}\in Z\left(x\ne\dfrac{1}{2}\right)\)
Ta có: \(\dfrac{2x^3-x^2+6x+2}{2x-1}=\dfrac{x^2\left(2x-1\right)+3\left(2x-1\right)+5}{2x-1}=x^2+3+\dfrac{5}{2x-1}\)
nguyên khi và chỉ khi: \(\left(2x-1\right)\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
\(\Rightarrow\left[{}\begin{matrix}2x-1=1\\2x-1=-1\\2x-1=5\\2x-1=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=0\\x=3\\x=-2\end{matrix}\right.\) (thỏa mãn).
Vậy: \(x\in\left\{-2;0;1;3\right\}\).
a: f(x) chia hết cho g(x)
=>x^2-3x-2x+6+3 chia hết cho x-3
=>3 chia hết cho x-3
=>x-3 thuộc {1;-1;3;-3}
=>x thuộc {4;2;6;0}
b: f(x) chia hết cho g(x)
=>2x^3-x^2+6x-3+5 chia hết cho 2x-1
=>5 chia hết cho 2x-1
=>2x-1 thuộc {1;-1;5;-5}
=>x thuộc {2;0;3;-2}

Lời giải:
a. $f(x)=x^4-3x^2+2x-7=x^3(x+2)-2x^2(x+2)+x(x+2)-7$
$=(x+2)(x^3-2x^2+x)-7=g(x)(x^3-2x^2+x)-7$
Vậy $f(x)$ chia $g(x)$ được thương là $x^3-2x^2+x$ và dư là $-7$
b. Theo phần a $f(x)=(x^3-2x^2+x)g(x)-7$
Với $x$ nguyên, để $f(x)\vdots g(x)$ thì $7\vdots g(x)$
$\Leftrightarrow x+2$ là ước của $7$
$\Rightarrow x+2\in\left\{\pm 1;\pm 7\right\}$
$\Leftrightarrow x\in\left\{-3; -1; 5; -9\right\}$
c.
Theo định lý Bezout về phép chia đa thức, để $K(x)=-2x^3+x-m\vdots x+2$ thì: $K(-2)=0$
$\Leftrightarrow -2(-2)^3+(-2)-m=0$
$\Leftrightarrow 14-m=0$
$\Leftrightarrow m=14$
\(x+2⋮x-7\)
=>\(x-7+9⋮x-7\)
=>\(9⋮x-7\)
=>\(x-7\in\left\{1;-1;3;-3;9;-9\right\}\)
=>\(x\in\left\{8;6;10;4;16;-2\right\}\)
Ta có:
x + 2 = x - 7 + 9
Để (x + 2) ⋮ (x - 7) thì 9 ⋮ (x - 7)
⇒ x - 7 ∈ Ư(9) = {-9; -3; -1; 1; 3; 9}
⇒ x ∈ {-2; 4; 6; 8; 10; 16}