Chứng minh rằng
Nếu số mn = 3.pq thì mnpq chia hết cho 43
GIẢI NHANH HỘ MK Ạ!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét ΔAQP có
A là trung điểm của MQ
B là trung điểm của MP
Do đó: AB là đường trung bình của ΔAQP
Suy ra: AB//QP
Xét hình thang MNPQ có
A là trung điểm của MQ
C là trung điểm của NP
Do đó: AC là đường trung bình của hình thang MNPQ
Suy ra: AC//QP//MN
Gọi số gồm 27 chữ số đó là \(\overline{aaaaa......aaaaa}\)(27 chữ số a)
Giả sử:
\(\overline{aaaaaa.......aaaaaaa}⋮27\)
\(\Rightarrow\overline{aaaaaaaaa.......aaaaaaaaaaa}⋮3^3\)
\(\Rightarrow a+a+a+a+...+a+a⋮3^3\)
\(27a⋮3^3\)
\(3^3a⋮3^3\)
\(3^3a⋮27\)
\(\rightarrowđpcm\)
Bài làm
Gọi 27 chữ số là aaaa..aaaa ( có 27 chữ ố a )
Giả sử : aaaa..aaaa \(⋮\) 27
=> aaaa..aaaa \(⋮\) 33
=> 27a \(⋮\) 33
=> 33a \(⋮\) 33
Suy ra : aaaa..aaaa \(⋮\) 27 ( ĐPCM)
Xét \(\Delta\)MPQ và \(\Delta\)PMN có:
MP chung
\(\widehat{QPM}\) = \(\widehat{PMN}\) (2 góc so le trong)
\(\widehat{QMP}\) = \(\widehat{NPM}\) (2 góc so le trong)
\(\Rightarrow\) \(\Delta\)MPQ = \(\Delta\)PMN (g-c-g)
\(\Rightarrow\) PQ = MN; MQ = PN (đpcm)
b, Xét \(\Delta\)MPQ và \(\Delta\)PMN có:
MP chung
MN = PQ
\(\widehat{QPM}\) = \(\widehat{PMN}\) ( 2 góc so le trong)
⇒\(\Delta\)MPQ = \(\Delta\)PMN ( cạnh góc cạnh)
\(\Rightarrow\) MQ = NP (đpcm)
⇒ \(\widehat{QMP}\) = \(\widehat{NPM}\)
Mà hai góc \(\widehat{QMP}\) và \(\widehat{NPM}\) ở vị trí so le trong và bằng nhau nên:
QM // NP (đpcm)
bài 1 :
a) Ta có MQ//NP (theo giả thiết).
Chứng minh MN = PQ:
Vì MN//PQ và MQ//NP, ta có hai tam giác MNP và QMQ' đồng dạng (theo nguyên lý đồng dạng của tam giác có hai cặp góc tương đồng bằng nhau).
Do đó, ta có tỉ số đồng dạng giữa các cạnh của hai tam giác là:
MN/MQ = NP/QM
Vì MQ//NP, nên ta có tỉ số đồng dạng:
MN/MQ = NP/NP
Từ đó suy ra: MN = PQ.
Chứng minh MQ = NP:
Vì MQ//NP, nên ta có tỉ số đồng dạng:
MQ/MN = NP/PQ
Vì MN = PQ (đã chứng minh ở trên), nên ta có tỉ số đồng dạng:
MQ/MN = NP/NP
Từ đó suy ra: MQ = NP.
b) Ta có MN = PQ (theo giả thiết).
Chứng minh MQ//NP:
Giả sử MQ không // NP. Khi đó, MQ và NP sẽ cắt nhau tại một điểm O.
Vì MN//PQ và MQ//NP, nên ta có hai tam giác MNP và QMQ' đồng dạng (theo nguyên lý đồng dạng của tam giác có hai cặp góc tương đồng bằng nhau).
Do đó, ta có tỉ số đồng dạng giữa các cạnh của hai tam giác là:
MN/MQ = NP/QM
Từ đó suy ra: MN/MQ = NP/NP
Vì MQ//NP, nên ta có tỉ số đồng dạng:
MN/MQ = NP/NP
Từ đó suy ra: MN = PQ.
Điều này mâu thuẫn với giả thiết MN = PQ (đã cho). Vậy giả sử MQ không // NP là sai.
Do đó, ta kết luận rằng MQ//NP.
Chứng minh MQ = NP:
Vì MQ//NP, nên ta có tỉ số đồng dạng:
MQ/MN = NP/PQ
Vì MN = PQ (đã chứng minh ở trên), nên ta có tỉ số đồng dạng:
MQ/MN = NP/NP
Từ đó suy ra: MQ = NP.
bài 2 :
a) Ta có MN = MQ và góc M = 50 độ. Vì tứ giác MNPQ là tứ giác cân (hai cạnh bằng nhau), nên góc N = góc Q.
Vì tổng các góc trong một tứ giác bằng 360 độ, ta có:
góc M + góc N + góc P + góc Q = 360 độ
Thay giá trị vào, ta có:
50 độ + góc N + 90 độ + góc N = 360 độ
Simplifying the equation:
140 độ + 2góc N = 360 độ
Trừ 140 độ từ hai phía:
2góc N = 220 độ
Chia cho 2:
góc N = 110 độ
Vậy số đo góc MQN là 110 độ.
b) Ta đã biết góc P = 90 độ. Vì tứ giác MNPQ là tứ giác cân (hai cạnh bằng nhau), nên góc M = góc Q.
Vì tổng các góc trong một tứ giác bằng 360 độ, ta có:
góc M + góc N + góc P + góc Q = 360 độ
Thay giá trị vào, ta có:
góc M + 110 độ + 90 độ + góc M = 360 độ
Simplifying the equation:
2góc M + 200 độ = 360 độ
Trừ 200 độ từ hai phía:
2góc M = 160 độ
Chia cho 2:
góc M = 80 độ
Vậy số đo góc MQP là 80 độ.
c) Để chứng minh MP vuông góc với NQ, ta cần chứng minh rằng góc MPN + góc NQP = 90 độ.
Ta đã biết góc P = 90 độ. Vì tứ giác MNPQ là tứ giác cân (hai cạnh bằng nhau), nên góc M = góc Q.
Vì tổng các góc trong một tứ giác bằng 360 độ, ta có:
góc M + góc N + góc P + góc Q = 360 độ
Thay giá trị vào, ta có:
góc M + góc N + 90 độ + góc M = 360 độ
Simplifying the equation:
2góc M + góc N = 270 độ
Vì góc M = góc Q, nên ta có:
2góc M + góc M = 270 độ
Lời giải:
a) Xét tam giác $EDM$ và $EKQ$ có:
$\widehat{E}$ chung
$\widehat{EDM}=\widehat{EKQ}$ (hai góc đồng vị)
$\Rightarrow \triangle EDM\sim \triangle EKQ$ (g.g)
b)
$MD\parallel QK$ nên theo định lý Talet:
$\frac{EM}{EQ}=\frac{ED}{EK}\Rightarrow EM.EK=EQ.ED$
a: Xét ΔABC có
\(\dfrac{AN}{AB}=\dfrac{AM}{AC}\)
Do đó: MN//BC
Xét tứ giác BNMC có MN//BC
nên BNMC là hình thang
mà \(\widehat{NBC}=\widehat{MCB}\)
nên BMNC là hình thang cân
a: Xét ΔMNQ có
A là trung điểm của MN
D là trung điểm của MQ
Do đó: AD là đường trung bình của ΔMNQ
Suy ra: AD//QN và AD=QN/2(1)
Xét ΔNPQ có
B là trung điểm của NP
C là trung điểm của QP
Do đó: BC là đường trung bình của ΔNPQ
Suy ra: BC//NQ và BC=NQ/2(2)
Từ (1) và (2) suy ra AD//BC và AD=BC
hay ABCD là hình bình hành
Cho hình thang cân MNPQ( MN//PQ). Gọi A, B, C , D lần lượt là trung điểm của MN, NP, PQ, MQ. Tứgiác ABCD là hình gì? ( Giúp mình với, mìn cảm ơn các b nhìu lắm lun, làm ơn giúp mình đi mà))
*Gợi ý: +MP = NQ theo tính chất hìnhthang cân
+ Sửdụng tính chất đường trung bình của tam giác Chứng minh tứgiác ABCD là hình thoi theo dấu hiệu tứgiác có bốn cạnh bằng nhau
\(\overline{mn}=3\overline{pq}\)
suy ra \(\overline{mnpq}=\overline{mn}\cdot100+\overline{pq}\)
\(\overline{mnpq}=301\cdot\overline{pq}\)
de thay \(301⋮43\)
xong
Cảm ơn bạn với lại giải giùm mình cái câu mình mới đăng nha! Kamsa!