K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 8 2017

a ) 18 = 9 . 2

Vì 1023 + 8 có tận cùng là 8 nên chia hết cho 2

     1023 + 8 có tổng các chữ số là 1 + 0 + 0 + .... + 8 = 9 nên chia hết cho 9 

Vậy 1023 + 8 chia hết cho 18

b ) 6 = 3.2

Tổng các chữ số của 1010 + 14 là 1 + 1 + 4 + 0 + 0 + 0 + .... + 0 = 6 nên chia hết cho 3

Tận cùng của 1010 + 14 là chẵn nên chia hết cho 2 .

Vậy 1010 + 14 chia hết cho 6

1 tháng 12 2016

ai trả lời nhanh thì tôi k cho nhiều nhất

10 tháng 8 2023

a) Ta có: \(10^{10}=10...0\) nên \(10^{10}-1=10...0-1=99...9\)

Nên: \(10^{10}-1⋮9\)

b) Ta có: \(10^{10}=10...0\) nên: \(10^{10}+2=10...0+2=10...2\)

Mà: \(1+0+...+2=3\)

Nên: \(10^{10}+2⋮3\)

c) Gọi số chẵn đó \(a\) số chẵn tiếp theo là:\(a+2\)

Mà tổng của 2 số chẵn đó là:

\(a+a+2=2a+2=2\left(a+1\right)\) không chia hết cho 4 nên 

Tổng của 2 số chẵn liên tiêp ko chia hết cho 4

10 tháng 8 2023

d) Gọi hai số tự nhiên đó là: \(a,a+1\)

Tích của 2 số tự nhiên đó là:

\(a\left(a+1\right)=a^2+a\) 

Nếu a là số lẻ thì \(a^2\) lẻ nên \(a^2+a\) là chẳn

Nếu a là số chẵn thì \(a^2\) chẵn nên \(a^2+a\) là chẵn 

Vậy tích của hai số liên tiếp là chẵn

e) Gọi hai số đó là: \(2a,2a+2\)

Tích của hai số đó là:

\(2a\cdot\left(2a+2\right)=4a^2+4a=4a\left(a+1\right)\) 

4a(a+1) chia hết cho 8 nên

Tích của hai số tự nhiên liên tiếp chia hết cho 8

7 tháng 10 2024

      Đây là toán nâng cao chuyên đề chia hết, cấu trúc thi chuyên, thi học sinh giỏi các cấp. Hôm nay, Olm sẽ hướng dẫn các em giải chi tiết dạng này bằng phương pháp đánh giá như sau:

         Bài 1: CM A = n2 + n + 6 ⋮ 2 

+ TH1: Nếu n là số chẵn ta có: n = 2k (k \(\in\) N)

  Khi đó: A = (2k)2 + 2k + 6 

              A = 4k2 + 2k + 6

             A =  2.(2k2 + k + 3)  ⋮ 2

+ TH2: Nếu n là số lẻ ta có: n2; n đều là số lẻ

         Suy ra n2 + n là chẵn vì tổng của hai số lẻ luôn là số chẵn

            ⇒  A = n2 + n + 6 là số chẵn 

                A = n2 + n + 6 ⋮ 2

+ Từ các lập luận trên ta có: A = n2 + n + 6 ⋮ 2 \(\forall\) n \(\in\) N

       

 

           

             

 

 

7 tháng 10 2024

Đây là dạng toán nâng cao chuyên đề tính chất chia hết của một tổng, cấu trúc thi chuyên, thi học sinh giỏi các cấp. Hôm nay, Olm sẽ hướng dẫn các em giải chi tiết dạng này bằng phương pháp quy nạp toán học như sau:

Bài 2: CM:  A = n3 + 5n ⋮6 ∀ \(n\) \(\in\) N

          Với n = 1 ta có: A = 13 + 1.5 

                A = 1 + 5 = 6 ⋮ 6

          Giả sử A đúng với n = k (k \(\in\) N)

          Khi đó ta có: A  = k3 + 5k ⋮ 6 \(\forall\) k \(\in\) N (1)

          Ta cần chứng minh A = n3 + 5n ⋮ 6 với n = k  + 1

          Tức là ta cần chứng minh: A = (k + 1)3 + 5.(k + 1) ⋮ 6

Thật vậy với n = k + 1 ta có: 

       A = (k  + 1)3 + 5(k + 1) 

      A = (k  +1).(k  + 1)(k + 1) + 5.(k  +1)

     A = (k2 + k + k  +1).(k + 1) + 5k  +5

     A =  [k2 + (k + k) + 1].(k + 1) + 5k + 5

    A = [k2 + 2k + 1].(k + 1) + 5k + 5

   A = k3 + k2 + 2k2 + 2k + k  +1  +5k  +5

   A  = (k3 + 5k) + (k2 + 2k2) + (2k + k) + (1 + 5) 

    A = (k3 + 5k) + 3k2 + 3k + 6

   A = (k3 + 5k) + 3k(k +1) + 6

   k.(k  +1) là tích của hai số liên tiếp nên luôn chia hết cho 2

 ⇒ 3.k.(k + 1) ⋮ 6 (2)

     6 ⋮ 6 (3)

Kết hợp (1); (2) và (3) ta có:

    A = (k3 + 5k) + 3k(k + 1) + 6 ⋮ 6 ∀ k \(\in\) N

Vậy A = n3 + 5n ⋮ 6 \(\forall\) n \(\in\) N (đpcm) 

 

 

      

 

 

 

                  

           

          

 

                 

 

 

 

9 tháng 1 2018

Chứng minh rng:

a) Ta có: 102002+8 = 10...000 (2002 số 0) + 8 = 10...008 (2001 số 0) có 8 tận cùng nên chia hết cho 2 và tổng các chữ số của nó là: 1+0+...+0+0+8=9 nên chia hết cho 9

Vậy 102002 +8 chia hết cho 2 và 9.

b) Tương tự: = 10...014 (2002 số 0) có 4 tận cùng nên chia hết cho 2

và tổng các chữ số của nó là: 1+0+...+0+1+4=6 nên chia hết cho 3

Vậy 102004 +14 chia hết cho 2 và 3.

1 tháng 10 2023

a, 10615 + 8 không chia hết cho 2 vì 8 ⋮ 2  nhưng 10615 không chia hết cho 2

10615 + 8 không chia hết cho 9 vì 1 + 6 + 1 + 5 + 8 = 21 không chia hết cho 9

1 tháng 10 2023

c,    B = 102010 -  4                                                                                   

       10 \(\equiv\) 1 (mod 3)

      102010 \(\equiv\) 12010 (mod 3)

      4          \(\equiv\) 1(mod 3)

⇒ 102010 - 4   \(\equiv\) 12010 - 1 (mod 3)

⇒ 102010 - 4   \(\equiv\)  0 (mod 3)

⇒ 102010 - 4 \(⋮\) 3