K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Giải:

a) Ta có:

a/b=c/d

a   =c/d.b

a   =(c.b)/d

a.d=c.b

Ngược lại, ta có:

a.d=c.b

a   =(c.b)/d

a   =c/d.b

a/b=c/d

b) Ta có:

a/b>c/d

a   >c/d.b

a   >(c.b)/d

a.d>c.b

Ngược lại, ta có:

a.d>c.b

a   >(c.b)/d

a   >c/d.b

a/b>c/d

c) Ta có:

a/b

a   

a   <(c.b)/d</p>

a.d

Ngược lại, ta có:

a.d

a   <(c.b)/d</p>

a   

a/b

9 tháng 8 2017

\(\frac{a}{b}< \frac{c}{d}\Leftrightarrow ad>bc\Leftrightarrow ad+dc>bc+dc\Leftrightarrow d\left(a+c\right)>c\left(b+d\right)\)

<=>\(\frac{d\left(a+c\right)}{d\left(b+d\right)}>\frac{c\left(b+d\right)}{d\left(b+d\right)}\)(do b,d>0)<=>\(\frac{a+c}{b+d}>\frac{c}{d}>\frac{a}{b}\)

ta có đpcm.

9 tháng 8 2017

???????????????

9 tháng 8 2017

Có:a/b<c/d

   =>ad<cb

   =>ad+ab<cb+ab

   =>a(b+d)<b(a+c)

   =>a/b<a+c/b+d(đpcm)

9 tháng 8 2017

đùa bố à

a,

b,  a/b < c/d => ad < cb
=>ad +ab < bc+ab
=> a(d+b) < b(a+c)
=> a/b < a+c/d+b (1)
* a/b < c/d => ad<cb
=> ad + cd < cb +cd
=> d(a+c) < c(b+d) 
=> c/d > a+c/b+d (2)
Từ (1) và (2) => a/b < a+c/b+d < c/d

24 tháng 6 2019

Vì \(b,d>0\)nên \(bd>0\)

Ta có:  \(\frac{a}{b}< \frac{c}{d}\)

\(\Leftrightarrow\frac{ad}{bd}< \frac{bc}{bd}\)

\(\Leftrightarrow ad< bc\)vì \(bd>0\)