Cho (a+b+c)^3=a^3+b^3+c^3 tính giá trị T =(a+b)(b+c)^2(c+a)^2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: a+b+c=1
nên \(\left(a+b+c\right)^3=1\)
\(\Leftrightarrow a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(a+c\right)=1\)
\(\Leftrightarrow3\left(a+b\right)\left(a+c\right)\left(b+c\right)=0\)
\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(a+c\right)=0\)
\(\Leftrightarrow a+b=0\)
hay a=-b
Thay a=-b vào biểu thức a+b+c=1, ta được:
-b+b+c=1
hay c=1
Thay a=-b vào biểu thức \(a^2+b^2+c^2=1\), ta được:
\(\left(-b\right)^2+b^2+1=1\)
\(\Leftrightarrow2b^2=0\)
hay b=0
Thay b=0 vào biểu thức a=-b, ta được:
a=-0=0
Vậy: a=0; b=0; c=1
bạn ơi cho mình hỏi dấu tương đương đầu tiên là nào đấy
Ta có: \(\frac{ab}{a+b}=\frac{bc}{b+c}=\frac{ca}{c+a}\)
\(\Rightarrow\frac{abc}{c\left(a+b\right)}=\frac{abc}{a\left(b+c\right)}=\frac{abc}{b\left(c+a\right)}\)
\(\Rightarrow c\left(a+b\right)=a\left(b+c\right)=b\left(c+a\right)\)
\(\Rightarrow ac+bc=ab+ac=bc+ab\)
Lại có: \(ac+bc=ab+ac\)\(\Rightarrow bc=ab\)\(\Rightarrow a=c\) (1)
\(ab+ac=bc+ab\)\(\Rightarrow ac=bc\)\(\Rightarrow a=b\) (2)
Từ (1) và (2) \(\Rightarrow a=b=c\)
Ta có: \(P=\frac{ab^2+bc^2+ca^2}{a^3+b^3+c^3}=\frac{a.a^2+b.b^2+c.c^2}{a^3+b^3+c^3}=\frac{a^3+b^3+c^3}{a^3+b^3+c^3}=1\)
\(\left(a+b+c\right)^3=a^3+b^3+c^3\)
=>\(a^3+b^3+c^3+3\left(a+b\right)\left(a+c\right)\left(b+c\right)=a^3+b^3+c^3\)
=>\(3\left(a+b\right)\left(a+c\right)\left(b+c\right)=0\)
=>\(\left(a+b\right)\left(a+c\right)\left(b+c\right)=0\)
\(T=\left(a+b\right)\cdot\left(b+c\right)^2\cdot\left(c+a\right)^2\)
\(=\left(a+b\right)\left(a+c\right)\left(b+c\right)\cdot\left(b+c\right)\left(a+c\right)\)
\(=0\cdot\left(b+c\right)\left(a+c\right)\)
=0