cho p là số nguyên tố lớn hơn 3 chứng tỏ rằng (p-1) (p+1) chia hết cho 3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cách 1:
p là số nguyên tố, p>3 => p không chia hết cho 3 (1)
p+2 là số nguyên tố, p+2>5>3 => p+2 không chia hết cho 3 (2)
Ta có: p(p+1)(p+2) là tích 3 số tự nhiên liên tiếp => p(p+1)(p+2) chia hết cho 3 (3)
Từ (1),(2),(3) => p+1 chia hết cho 3 (*)
Ta lại có: p là số nguyên tố, p>3 => p lẻ => p+1 chẵn => p+1 chia hết cho 2 (**)
Mà (2;3)=1 (***)
Từ (*),(**),(***) => p+1 chia hết cho 6.
Cách 2:
Số nguyên tố lớn hơn 3 sẽ có dạng 3k+1 hay 3k+2 (k thuộc N)
Nếu p=3k+1 thì p+2=3k+1+2=3k+3=3.(k+1) là số nguyên tố. Vì 3.(k+1) chia hết cho 3 nên dạng p=3k+1 không thể có.
Vậy p có dạng 3k+2 (thật vậy, p+2=3k+2+2=3k+4 là 1 số nguyên tố).
=>p+1=3k+2+1=3k+3=3.(k+1) chia hết cho 3.
Mặt khác, p là 1 số nguyên tố lớn hơn 3 cũng như lớn hơn 2 nên p là 1 số nguyên tố lẻ => p+1 là 1 số chẵn => p+1 chia hết cho 2.
Cho p là số nguyên tố lớn hơn 3 , biết p + 2 cũng là số nguyên tố. Chứng tỏ rằng p +1 chia hết cho 6
p là số nguyên tố lớn hơn 3 nên p = 2k + 1 hoặc p = 2k + 2
- Nếu p = 2k + 1 => p + 2 = 2k + 3,là số nguyên tố nếu p không là bội của 3. Do đó p + 1 = 2k + 2 chia hết cho 6.
- Nếu p = 2k + 2 => p + 2 = 3k + 4 là hợp số, loại.
=> đpcm
tick đúng cho tớ với !
Cho p là số nguyên tố lớn hơn 3 , biết p + 2 cũng là số nguyên tố. Chứng tỏ rằng p +1 chia hết cho 6
Tp là số nguyên tố lớn hơn 3 nên p = 2k + 1 hoặc p = 2k + 2
- Nếu p = 2k + 1 => p + 2 = 2k + 3,là số nguyên tố nếu p không là bội của 3. Do đó p + 1 = 2k + 2 chia hết cho 6.
- Nếu p = 2k + 2 => p + 2 = 3k + 4 là hợp số, loại.
=> đpcm
tick đúng cho tớ với !
vì p là số nguyên tố lớn hơn 3 nên p có dạng 3k+1 hoặc 3k+2 và p lẻ
Nếu p có dạng p=3k+1 => p+2=3(k+1) là hợp số -> Loại
vậy p có dạng 3k+2
=> p+1=3(k+1) chia hết cho 3
vì p lẻ nên p+1 chẵn => p+1 chia hết cho 2
=> p chia hết cho 6
Vì p là số nguyên tố lớn hơn 3
=>p là số lẻ
=>p=2k+1
Khi đó: (p-1).(p+1)=(2k+1-1).(2k+1+1)=2k.(2k+2)=2k.2.(k+1)=4.k.(k+1)
Vì k và k+1 là 2 số tự nhiên liên tiếp
=>k.(k+1) chia hết cho 2
=>4.k.(k+1) chia hết cho 4.2
=>4.k.(k+1) chia hết cho 8
=>(p-1).(p+1) chia hết cho 8(1)
Lại có: (p-1).(p+1)=p2-1
Vì p là số nguyên tố lớn hơn 3
=>p không chia hết cho 3
=>p2 chia 3 dư 1
=>p2-1 chia hết cho 3
=>(p-1).(p+1) chia hết cho 3(2)
Từ (1) và (2) ta thấy:
(p-1).(p+1) chia hết cho 8 và 3
Mà (8,3)=1
=>(p-1).(p+1) chia hết cho 8.3
=>(p-1).(p+1) chia hết cho 24
Vậy (p-1).(p+1) chia hết cho 24
Ta có: p là số nguyên tố lớn hơn 3
=>p không chia hết cho 3
TH1: p=3m+1 (m thuộc N)
=>p2=(3m+1)2=3m(3m+1)+(3m+1)=9m2+3m+3m+1=3(3m2+2m)+1
=>p2 chia 3 dư 1
TH2: p=3n+2 (n thuộc N)
=>p2=(3n+2)2=3n(3n+2)+2(3n+2)=9n2+6n+6n+4=3(3n2+4n+1)+1
=>p2 chia 3 dư 1
Vậy p2 luôn chia 3 dư 1 (với p là SNT >3)
=>p2-1 chia hết cho 3(đpcm)
mình đang cần gấp vì mai khảo sát hs giỏi nên mọi người giúp