K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 8 2017

cái đề là j 

7 tháng 8 2017

(x+y+z)2

6 tháng 10 2021

Áp dụng t/c DTSBN:

\(\dfrac{x}{2}=\dfrac{y}{4}=\dfrac{z}{6}=\dfrac{x-y+z}{2-4+6}=\dfrac{8}{4}=2\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{2}=2\Rightarrow x=2.2=4\\\dfrac{y}{4}=2\Rightarrow y=4.2=8\\\dfrac{z}{6}=2\Rightarrow z=6.2=12\end{matrix}\right.\)

6 tháng 10 2021

\(\dfrac{x}{2}=\dfrac{y}{4}=\dfrac{z}{6}\) 

Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(\dfrac{x}{2}=\dfrac{y}{4}=\dfrac{z}{6}=\dfrac{x-y+z}{2-4+8}=\dfrac{8}{6}=\dfrac{4}{3}\)

\(\left\{{}\begin{matrix}x=\dfrac{4}{3}.2=\dfrac{8}{3}\\y=\dfrac{4}{3}.4=\dfrac{16}{3}\\z=\dfrac{4}{3}.6=8\end{matrix}\right.\)

1 tháng 10 2017

\(\Rightarrow\frac{x}{2}=\frac{y}{3};\frac{y}{5}=\frac{z}{7}=\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=\frac{2x}{10.2}=\frac{3y}{15.3}=\frac{z}{21}=\frac{2x}{20}=\frac{3y}{45}=\frac{z}{21}=\frac{2x+3y+z}{20+45+21}=\frac{172}{86}=2\)

\(\frac{x}{10}=2\Rightarrow x=2.10=20\)

\(\frac{y}{15}=2\Rightarrow y=2.15=30\)

\(\frac{z}{21}=2\Rightarrow z=2.21=42\)

Vậy x=20 ; y=30 và z=42

2 tháng 9 2018

Áp dụng tính chất dãy tỉ số bằng nhau

\(\frac{x}{5}=\frac{y}{7}=\frac{z}{9}=\frac{x-y+z}{5-7+9}=\frac{315}{7}=45\)

  suy ra:   x/5 = 45   =>  x  =  225

               y/7 = 45  =>  y  =  315

               z/9 = 45  =>  z  =  405

12 tháng 7 2023

\(\dfrac{y+z+1}{x}=\dfrac{x+z+2}{y}+\dfrac{x+y-3}{z}\\ =\dfrac{y+z+1+x+z+2+x+y-3}{x+y+z}=\dfrac{2\left(z+y+x\right)}{x+y+z}=2\\ \to\left\{{}\begin{matrix}y+z+1=2x\\x+z+2=2y\\x+y-3=2z\end{matrix}\right.\to\left\{{}\begin{matrix}x+y+z=3x-1\\x+y+z=3y-2\\x+y+z=3z+3\end{matrix}\right.\)

Mặt khác \(\dfrac{1}{x+y+z}=2\to x+y+z=\dfrac{1}{2}\)

\(\to\left\{{}\begin{matrix}3x-1=\dfrac{1}{2}\\3y-2=\dfrac{1}{2}\\3z+3=\dfrac{1}{2}\end{matrix}\right.\to\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=\dfrac{5}{6}\\z=-\dfrac{5}{6}\end{matrix}\right.\)