Chứng tỏ rằng:
A=\(\frac{3}{10}+\frac{3}{11}+\frac{3}{12}+\frac{3}{13}+\frac{3}{14}\)
Thì 1<A<2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trích bài của bạn TRỊNH TIẾN ĐỨC đã giải lâu lắm rồi. (Có sửa chữa tiểu tiết để cho phù hợp với bài)
Ta có: \(A< \frac{3}{10}+\frac{3}{10}+\frac{3}{10}+\frac{3}{10}+\frac{3}{10}\)
\(\Rightarrow A< \frac{15}{10}< \frac{20}{10}< 2\)
\(A>\frac{3}{14}+\frac{3}{14}+\frac{3}{14}+\frac{3}{14}+\frac{3}{14}\)
\(\Rightarrow A>\frac{15}{14}>1\)
Kết luận: \(1< A< 2\)
\(\Rightarrow A\)không phải số tự nhiên
Ta có S < 3/10 + 3/10 + 3/10 + 3/10 + 3/10
=> S < 15/10 < 20/10 = 2
=> S > 15/14 > 1
=> 1 < S < 2
=> S không phải là số tự nhiên
có 3/10>3/14
3/11>3/14
3/12>3/14
3/13>3/14
3/14=3/14
=> 3/10+3/11+3/12+3/13+3/14>3/14+3/14+3/14+3/14+3/14
=>S>3/14 . 5
=S> 15/14
mà 15/14>1
=>S>1
Có 3/10=3/10
3/11<3/10
3/12<3/10
3/13<3/10
3/14<3/10
=>3/10+3/11+3/12+3/13+3/14<3/10+3/10+3/10+3/10+3/10
=>S<3/10 . 5
=> S<3/2
vì 3/2<2
=>S<2
=>1<S<2
mà giữa 1 và 2 ko có số tự nhiên nào
=> S ko phải số tự nhiên
Bài 1:
ta có: \(A=\frac{n+1}{n-2}=\frac{n-2+3}{n-2}=1+\frac{3}{n-2}\)
Để A thuộc Z
=> 3/n-2 thuộc Z
=> n -2 chia hết cho 3
=> n - 2 thuộc Ư(3) = {1;-1;3;-3}
nếu n - 2 = 1 => n = 3 (TM)
n-2 = -1 => n = 1 (TM)
n - 2 = 3 => n = 5 (TM)
n -2 = -3 => n = - 1 (TM)
KL:...
\(A=\frac{n+1}{n-2}=\frac{n-2+3}{n-2}=1+\frac{3}{n-2}\)
Để \(A\in Z\Leftrightarrow3⋮\left(n-2\right)\Leftrightarrow n-2\inƯ\left(3\right)=\left\{-1;1;3;-3\right\}\)
Nếu n - 2 = -1 thì n = 1
Nếu n - 2 = 1 thì n = 3
Nếu n - 2 = 3 thì n = 5
Nếu n - 2 = -3 thì n = -1
Vậy Để A nguyên khi và chỉ khi n = {-1;1;3;5}
S=\(\frac{3}{10}+\frac{3}{11}+\frac{3}{12}+\frac{3}{13}+\frac{3}{14}<\frac{4}{10}+\frac{4}{10}+\frac{4}{10}+\frac{4}{10}+\frac{4}{10}\)
=\(\frac{4}{10}\cdot5=2=>S<2\)
S=\(\frac{3}{10}+\frac{3}{11}+\frac{3}{12}+\frac{3}{13}+\frac{3}{14}<\frac{3}{15}+\frac{3}{15}+\frac{3}{15}+\frac{3}{15}+\frac{3}{15}\)
=\(\frac{3}{15}\cdot5=1=>S>1\)
Vậy 1<S<2
nhớ k với nhé
Trên máy mk hiển thị , câu hỏi này 4 phút nữa mới chính thức xuất hiện ,,, máy bị j hay do câu hỏi ak ??
1) Cho \(S=\frac{3}{10}+\frac{3}{11}+\frac{3}{12}+\frac{3}{13}+\frac{3}{14}\)
Chứng minh rằng : S > 1
S=3.(\(\frac{1}{10}\)+\(\frac{1}{11}\)+\(\frac{1}{12}\)+\(\frac{1}{13}\)+\(\frac{1}{14}\))>3.(5.\(\frac{1}{14}\))>3.\(\frac{1}{3}\)=1
Vậy:S>1
a
A=1+3+3²+...+3^30
3A=3(1+3+3²+...+3^30)
3A=3+3²+3^3+...+3^31
3A-A=3^31-1
=>A=3^31-1