Cho tam giác ABC vuông tại A. Phân giác của góc B cắt AC ở D. CMR: AD<DC.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Từ D kẻ \(DK\perp BC⋮H\)
A B C D H E K 1 2 3 4 1 2
Xét tam giác ABD vuông tại A và tam giác KBD vuông tại K
có: góc B1 = góc B2 (gt)
BD là cạnh chung
\(\Rightarrow\Delta ABD=\Delta KBD\left(ch-gn\right)\)
=> góc D1 = góc D 2 ( 2 góc tương ứng) (1)
AD = KD ( 2 cạnh tương ứng) (*)
ta có: góc D2 + góc D3 = góc BDE
thay số: góc D2 + góc D3 = 90 độ (2)
ta có: góc D1 +( góc D2 + góc D3 )+ góc D4 = 180 độ
thay số: góc D1 +90 độ + góc D4 = 180 độ
góc D1 + góc D4 = 180 độ - 90 độ
góc D1 + góc D4 = 90 độ (3)
Từ (1);(2);(3) => góc D2 + góc D3 = góc D1 + góc D4 ( = 90 độ)
=> góc D3 = góc D4 ( góc D2 = góc D1)
Xét tam giác KDE vuông tại K và tam giác HDE vuông tại H
có: góc D3 = góc D4 (cmt)
DE là cạnh chung
\(\Rightarrow\Delta KDE=\Delta HDE\left(ch-gn\right)\)
=> KD = HD ( 2 cạnh tương ứng) (**)
Từ (*);(**) => AD = HD (=KD)
Lấy K là trung điểm BE, Tam giác ADE vuông tại D => DK=BK vậy tam giác ADK cân tại K
=> góc KBD= góc BDK
Đề bài BD là phân giác góc A =>góc BKD=góc DBA = góc BDK
=>KD//AB . Ta thấy ABHE là hình thang vuông, DK // 2 cạnh đáy và đi qua trung điểm 1 cạnh bên => DA=DH

???????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????

a) Để chứng minh tam giác ABD = tam giác ACD, ta cần chứng minh hai tam giác có cạnh và góc bằng nhau. - Biết AB = AC (đề bài). - Ta có DB là đường cao của tam giác ABD và DC là đường cao của tam giác ACD. Theo định nghĩa, đường cao của tam giác là đoạn thẳng kẻ từ các góc vuông góc dưới đến đáy tương ứng. - Vì AB = AC và BD ⊥ AB, CD ⊥ AC nên ta có DB = DC (hai đường cao cùng thuộc tam giác cân). => Tam giác ABD = tam giác ACD (theo nguyên lý tỷ lệ cận). b) Để chứng minh AD là tia phân giác của góc A, ta cần chứng minh rằng góc BAD = góc CAD. - Ta đã chứng minh được tam giác ABD = tam giác ACD (bài a). - Vì hai tam giác cân bằng nhau nên góc BAD = góc CAD (theo tính chất của tam giác cân). => AD là tia phân giác của góc A. c) Để chứng minh AD ⊥ AC, ta cần chứng minh góc ADB + góc ADC = 90°. - Ta đã chứng minh được tam giác ABD = tam giác ACD (bài a). - Vì hai tam giác cân bằng nhau nên góc ADB = góc ADC (theo tính chất của tam giác cân). - Góc ADB + góc ADC = 2 * góc ADB (do góc ADB = góc ADC). - Vì tam giác ABD là tam giác vuông nên góc ADB = 90° / 2 = 45°. - Do đó góc ADB + góc ADC = 45° + 45° = 90°. => AD ⊥ AC (theo tính chất của góc vuông). Vì vậy, ta đã chứng minh a), b), c).
a: Xét ΔABD vuông tại B và ΔACD vuông tại C có
AD chung
AB=AC
=>ΔABD=ΔACD
b: ΔABD=ΔACD
=>góc BAD=góc CAD
=>AD là phân giác của góc BAC

cho tam giác ABC vuông tại A, AC>AB, vẽ đường phân giác AD, đường thẳng vuông góc với BC tại D cắt AC ở E. CMR: DB=DE
A C B D 1 2 K
Từ D kẻ \(DK⊥BC\left(K\in BC\right)\)
Vì DB là phân giác của \(\widehat{B}\) ; lại có \(DA⊥AC;DK⊥BC\) \(\Rightarrow DA=DK\)(TC đường phân giác của 1 góc)
Xét \(\Delta DKC\) có DC là cạnh huyền => DC là cạnh lớn nhất => \(DC>DK\)
Mà \(AK=AD\Rightarrow DC>AD\) hay \(AD< DC\) (đpcm)
giống toán lớp 7